Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 Vol. 42, No. 6
Article Contents

ZHANG Zhiyuan, TENG Daoguang, CAO Yijun, LI Peng. Research Progress on the Occurrence and Separation of Germanium from Coal[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 10-20. doi: 10.13779/j.cnki.issn1001-0076.2022.06.002
Citation: ZHANG Zhiyuan, TENG Daoguang, CAO Yijun, LI Peng. Research Progress on the Occurrence and Separation of Germanium from Coal[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 10-20. doi: 10.13779/j.cnki.issn1001-0076.2022.06.002

Research Progress on the Occurrence and Separation of Germanium from Coal

More Information
  • Germanium is a typical dispersive and strategic metal. Coal related germanium mineral resources in China have typical resource advantages, however there are still many challenges in the supernormal enrichment and extraction of germanium. The distribution characteristics, content and occurrence of germanium in coal were described, and the typical leaching methods of germanium in coal measures were summarized, such as direct leaching of germanium from raw coal by water metallurgy and microbial leaching, and leaching of germanium from fly ash by water leaching, inorganic acid leaching and organic acid leaching. Furthermore, the enrichment and separation methods of germanium from coal leaching liquid were summarized, including solvent extraction, ion exchange resin, supported liquid membranes and ion flotation. In addition, germanium could be separated from coal by dry distillation and volatilization, alkali melting neutralization, alloy process, AlCl3 smelting, zinc powder reduction for germanium extraction, the existing problems of germanium separation were analyzed, and the development direction was prospected.

  • 加载中
  • [1] 代世峰, 刘池洋, 赵蕾, 等. 煤系中战略性金属矿产资源: 意义和挑战[J]. 煤炭学报, 2022, 47(5): 1743−1749.

    Google Scholar

    DAI S F, LIU C Y, ZHAO L, et al. Strategic metal resources in coal-bearing strata: Significance and challenges[J]. Journal of China Coal Society, 2022, 47(5): 1743−1749.

    Google Scholar

    [2] 代世峰, 任徳贻, 周义平, 等. 煤型稀有金属矿床: 成因类型、赋存状态和利用评价[J]. 煤炭学报, 2014, 39(8): 1707−1715.

    Google Scholar

    DAI S F, REN D Y, ZHOU Y P, et al. Coal-hosted rare metal deposits: Genetic types, modes of occurrence, and utilization evaluation[J]. Journal of China Coal Society, 2014, 39(8): 1707−1715.

    Google Scholar

    [3] DAI S, YAN X, WARD C R, et al. Valuable elements in Chinese coals: A review[J]. International Geology Review, 2018, 60(5/6): 590−620. doi: 10.1080/00206814.2016.1197802

    CrossRef Google Scholar

    [4] DAI S, REN D, CHOU C, et al. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization[J]. International Journal of Coal Geology, 2012, 94: 3−21. doi: 10.1016/j.coal.2011.02.003

    CrossRef Google Scholar

    [5] 徐硕, 杨金林, 马少健. 粉煤灰综合利用研究进展[J]. 矿产保护与利用, 2021, 41(3): 104−111.

    Google Scholar

    XU S, YANG J L, MA S J. Research progress in the comprehensive utilization of fly ash[J]. Conservation and Utilization of Mineral Resources, 2021, 41(3): 104−111.

    Google Scholar

    [6] 秦身钧, 徐飞, 崔莉, 等. 煤型战略关键微量元素的地球化学特征及资源化利用[J]. 煤炭科学技术, 2022, 50(3): 1−38.

    Google Scholar

    QIN S J, XU F, CUI L, et al. Geochemistry characteristics and resourse utilization of strategically critical trace elements from coal-related resources[J]. Coal Science and Technology, 2022, 50(3): 1−38.

    Google Scholar

    [7] DAI S, FINKELMAN R B. Coal as a promising source of critical elements: Progress and future prospects[J]. International Journal of Coal Geology, 2018, 186: 155−164. doi: 10.1016/j.coal.2017.06.005

    CrossRef Google Scholar

    [8] ROSENBERG E. Germanium: Environmental occurrence, importance and speciation[J]. Reviews in Environmental Science and Bio/Technology, 2009, 8(1): 29−57. doi: 10.1007/s11157-008-9143-x

    CrossRef Google Scholar

    [9] HÖLL R, KLING M, SCHROLL E. Metallogenesis of germanium-A review[J]. Ore Geology Reviews, 2007, 30(3/4): 145−180. doi: 10.1016/j.oregeorev.2005.07.034

    CrossRef Google Scholar

    [10] 代世峰, 赵蕾, 魏强, 等. 中国煤系中关键金属资源: 富集类型与分布[J]. 科学通报, 2020, 65(33): 3715−3729. doi: 10.1360/TB-2020-0112

    CrossRef Google Scholar

    DAI S F, ZHAO L, WEI Q, et al. Resources of critical metals in coal-bearing sequences in China: Enrichment types and distribution[J]. Chinese Science Bulletin, 2020, 65(33): 3715−3729. doi: 10.1360/TB-2020-0112

    CrossRef Google Scholar

    [11] 代俊峰, 李增华, 许德如, 等. 煤型关键金属矿产研究进展[J]. 大地构造与成矿学, 2021, 45(5): 963−982.

    Google Scholar

    DAI J F, LI Z H, XU D R, et al. Coal-hosted critical metal deposits: A review[J]. Geotectonica et Metallogenia, 2021, 45(5): 963−982.

    Google Scholar

    [12] DAI S, WANG X, SEREDIN V V, et al. Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: New data and genetic implications[J]. International Journal of Coal Geology, 2013, 105: 141. doi: 10.1016/j.coal.2012.10.009

    CrossRef Google Scholar

    [13] 王婷灏, 黄文辉, 闫德宇, 等. 中国大型煤-锗矿床成矿模式研究进展: 以云南临沧和内蒙古乌兰图嘎煤-锗矿床为例[J]. 地学前缘, 2016, 23(3): 113−123.

    Google Scholar

    WANG T H, HUANG W H, YAN D Y, et al. Progress of research on mineralization mode of large coal-Ge deposits in China: Coal-Ge deposit in Wulantuga of Inner Mongolia and Lincang of Yunnan[J]. Earth Science Frontiers, 2016, 23(3): 113−123.

    Google Scholar

    [14] DAI S, WANG P, WARD C R, et al. Elemental and mineralogical anomalies in the coal-hosted Ge ore deposit of Lincang, Yunnan, southwestern China: Key role of N2-CO2-mixed hydrothermal solutions[J]. International Journal of Coal Geology, 2015, 152: 19−46. doi: 10.1016/j.coal.2014.11.006

    CrossRef Google Scholar

    [15] 胡瑞忠, 苏文超, 戚华文, 等. 锗的地球化学、赋存状态和成矿作用[J]. 矿物岩石地球化学通报, 2000(4): 215−217. doi: 10.3969/j.issn.1007-2802.2000.04.002

    CrossRef Google Scholar

    HU R Z, SU W C, QI H W, et al. The geochemistry, occurrence and mineralization of germanium[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2000(4): 215−217. doi: 10.3969/j.issn.1007-2802.2000.04.002

    CrossRef Google Scholar

    [16] POKROVSKI G S, MARTIN F, HAZEMANN J-L, et al. An X-ray absorption fine structure spectroscopy study of germanium-organic ligand complexes in aqueous solution[J]. Chemical Geology, 2000, 163(1/2/3/4): 151−165. doi: 10.1016/S0009-2541(99)00102-3

    CrossRef Google Scholar

    [17] WEI Q, RIMMER S M. Acid solubility and affinities of trace elements in the high-Ge coals from Wulantuga (Inner Mongolia) and Lincang (Yunnan Province), China[J]. International Journal of Coal Geology, 2017, 178: 39−55. doi: 10.1016/j.coal.2017.04.011

    CrossRef Google Scholar

    [18] ETSCHMANN B, LIU W, LI K, et al. Enrichment of germanium and associated arsenic and tungsten in coal and roll-front U deposits[J]. Chemical Geology, 2017, 463: 29−49. doi: 10.1016/j.chemgeo.2017.05.006

    CrossRef Google Scholar

    [19] WEI Q, CUI C, DAI S. Organic-association of Ge in the coal-hosted ore deposits: An experimental and theoretical approach[J]. Ore Geology Reviews, 2020, 117: 103291. doi: 10.1016/j.oregeorev.2019.103291

    CrossRef Google Scholar

    [20] ZHUANG X, QUEROL X, ALASTUEY A, et al. Geochemistry and mineralogy of the Cretaceous Wulantuga high-germanium coal deposit in Shengli coal field, Inner Mongolia, Northeastern China[J]. International Journal of Coal Geology, 2006, 66(1/2): 119−136. doi: 10.1016/j.coal.2005.06.005

    CrossRef Google Scholar

    [21] 魏强. 煤型锗矿床中异常富集微量元素的亲和性研究[D]. 北京: 中国矿业大学, 2018.

    Google Scholar

    WEI Q. Study on the affinity of abnormally enriched trace elements in the coal-hosted germanium ore deposits[D]. Beijing: China University of Mining and Technology, 2018.

    Google Scholar

    [22] HUCULAK-MACZKA M, HOFFMANN J, HOFFMANN K. Evaluation of the possibilities of using humic acids obtained from lignite in the production of commercial fertilizers[J]. Journal of Soils and Sediments, 2018, 18: 2868−2880. doi: 10.1007/s11368-017-1907-x

    CrossRef Google Scholar

    [23] 王建新, 李晶, 赵仕宝, 等. 中国粉煤灰的资源化利用研究进展与前景[J]. 硅酸盐通报, 2018, 37(12): 3833−3841.

    Google Scholar

    WANG J X, LI J, ZHAO S B, et al. Research progress and prospect of resource utilization of fly ash in China[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(12): 3833−3841.

    Google Scholar

    [24] 刘丽霞, 李文挺, 彭军, 等. 粉煤灰中锗的赋存状态研究[J]. 稀有金属与硬质合金, 2017, 45(5): 27−30.

    Google Scholar

    LIU L X, LI W T, PENG J, et al. Study on occurrence state of germanium in the coal ash[J]. Rare Metals and Cemented Carbides, 2017, 45(5): 27−30.

    Google Scholar

    [25] DAI S, SEREDIN V V, WARD C R, et al. Composition and modes of occurrence of minerals and elements in coal combustion products derived from high-Ge coals[J]. International Journal of Coal Geology, 2014, 121: 79−97. doi: 10.1016/j.coal.2013.11.004

    CrossRef Google Scholar

    [26] 邹平, 雷霆, 张玉林, 等. 煤矸石中锗的挥发试验[J]. 金属矿山, 2006(8): 79−81. doi: 10.3321/j.issn:1001-1250.2006.08.021

    CrossRef Google Scholar

    ZOU P, LEI T, ZHANG Y L, et al. Experimental study on germanium volatilization from coal gangue[J]. Metal Mine, 2006(8): 79−81. doi: 10.3321/j.issn:1001-1250.2006.08.021

    CrossRef Google Scholar

    [27] 王玲. 褐煤中提取锗的工艺研究[D]. 唐山: 河北理工学院, 2004.

    Google Scholar

    WANG L. The study about distilling Ge's technics from lignite[D]. Tangshan: Hebei Institute of Technology, 2004.

    Google Scholar

    [28] 钞晓光, 李依帆, 张云峰, 等. 煤中锗的资源分布及其提取工艺研究进展[J]. 矿产综合利用, 2020(4): 21−25.

    Google Scholar

    CHAO X G, LI Y F, ZHANG Y F, et al. Research progress on resource distribution and extraction technology of germanium in coal[J]. Multipurpose Utilization of Mineral Resources, 2020(4): 21−25.

    Google Scholar

    [29] 庄汉平, 卢家烂, 傅家谟, 等. 临沧超大型锗矿床锗赋存状态研究[J]. 中国科学(D辑:地球科学), 1998(S2): 37−42.

    Google Scholar

    ZHUANG H P, LU J L, FU J M, et al. Study on occurrence state of germanium in lincang super large germanium deposit[J]. Scientia Sinica(Terrae), 1998(S2): 37−42.

    Google Scholar

    [30] 朱云, 胡汉, 苏云生. 微生物从煤中浸出锗的基础热力学[J]. 云南冶金, 2002(3): 106−108.

    Google Scholar

    ZHU Y, HU H, SU Y S. Basic thermodynamics on germanium recovery from lignite by microorganism[J]. Yunnan Metallurgy, 2002(3): 106−108.

    Google Scholar

    [31] 罗道成. 低品位含锗褐煤中锗的微生物浸出研究[J]. 煤化工, 2007(4): 44−47.

    Google Scholar

    LUO D C. Leaching germanium from low-grade lignite containing germanium with microorganism[J]. Coal Chemical Industry, 2007(4): 44−47.

    Google Scholar

    [32] 邹本东, 李晓燕, 陈圆圆, 等. 褐煤中锗的连续化学提取及形态分布研究[J]. 中国检验检测, 2017, 25(1): 20−22.

    Google Scholar

    ZOU B D, LI X Y, CHEN Y Y, et al. Study on continuous chemical extraction and speciation distribution of germanium from lignite[J]. China Inspection Body and Laboratory, 2017, 25(1): 20−22.

    Google Scholar

    [33] 徐冬, 陈毅伟, 郭桦, 等. 煤中锗的资源分布及煤伴锗提取工艺的研究进展[J]. 煤化工, 2013, 41(4): 53−57. doi: 10.3969/j.issn.1005-9598.2013.04.016

    CrossRef Google Scholar

    XU D, CHEN Y W, GUO H, et al. Resource distribution of germanium in coal and study progress on the germanium recovery from coal[J]. Coal Chemical Industry, 2013, 41(4): 53−57. doi: 10.3969/j.issn.1005-9598.2013.04.016

    CrossRef Google Scholar

    [34] 朱云, 胡汉, 郭淑仙. 微生物浸出煤中锗的工艺[J]. 稀有金属, 2003(2): 310−313.

    Google Scholar

    ZHU Y, HU H, GUO S X. Techology of leaching germanium from lignite by means of microorganism aided[J]. Chinese Journal of Rare Metals, 2003(2): 310−313.

    Google Scholar

    [35] JIANG T, ZHANG T, LIU Z. Review on resources and recycling of germanium, with special focus on characteristics, mechanism and challenges of solvent extraction[J]. Journal of Cleaner Production, 2021, 294: 126217. doi: 10.1016/j.jclepro.2021.126217

    CrossRef Google Scholar

    [36] ROBERTZ B, VERHELLE J, SCHURMANS M. The Primary and secondary production of germanium: A life-cycle assessment of different process alternatives[J]. JOM, 2015, 67: 412−424. doi: 10.1007/s11837-014-1267-6

    CrossRef Google Scholar

    [37] ZHANG L, XU Z. One-pot synthesis of Ge as ultrafine particles from coal fly ash by vacuum dynamic flash reduction and inert gas condensation.[J]. Scientific Reports, 2017, 7: 3461. doi: 10.1038/s41598-017-03561-8

    CrossRef Google Scholar

    [38] ARROYO F, FONT O, CHIMENOS J M, et al. IGCC fly ash valorisation. Optimisation of Ge and Ga recovery for an industrial application[J]. Fuel Processing Technology, 2014, 124: 222−227. doi: 10.1016/j.fuproc.2014.03.004

    CrossRef Google Scholar

    [39] CHIMENOS J M, FERNANDEZ A I, DEL VALLE-ZERMENO R, et al. Arsenic and antimony removal by oxidative aqueous leaching of IGCC fly ash during germanium extraction[J]. Fuel, 2013, 112: 450−458. doi: 10.1016/j.fuel.2013.05.059

    CrossRef Google Scholar

    [40] XU D, CHEN Y W, GUO H, et al. Review of germanium recovery technologies from coal[J]. Applied Mechanics and Materials, 2013, 2746: 423−426.

    Google Scholar

    [41] ZHANG L, XU Z. Application of vacuum reduction and chlorinated distillation to enrich and prepare pure germanium from coal fly ash[J]. Journal of Hazardous Materials, 2017, 321: 18−27. doi: 10.1016/j.jhazmat.2016.08.070

    CrossRef Google Scholar

    [42] 曹洪杨, 陈冬冬, 饶帅, 等. 低品位含锗褐煤烟尘二次富集提锗工艺研究[J]. 有色金属(冶炼部分), 2019(12): 29−32.

    Google Scholar

    CAO H Y, CHEN D D, RAO S, et al. Study on secondary enrichment and extraction of germanium from low grade germanium-bearing dust of cyclone furnace[J]. Nonferrous Metals(Extractive Metallurgy), 2019(12): 29−32.

    Google Scholar

    [43] 普世坤. 热还原—真空挥发富集提取锗研究[D]. 上海: 上海大学, 2016.

    Google Scholar

    PU S K. Extraction of germanium by thermal reduction vacuum evaporation[D]. Shanghai: Shanghai University, 2016.

    Google Scholar

    [44] ARNORSSON S. Germanium in Icelandic geothermal systems[J]. Geochimica ET Cosmochimica Acta, 1984, 48(12): 2489−2502. doi: 10.1016/0016-7037(84)90300-4

    CrossRef Google Scholar

    [45] 刘福财, 袁琴, 王铁艳. 煤烟尘制取四氯化锗的研究[J]. 稀有金属, 2011, 35(4): 623−626. doi: 10.3969/j.issn.0258-7076.2011.04.025

    CrossRef Google Scholar

    LIU F C, YUAN Q, WANG T Y. Preparation of germanium tetrachloride with soot[J]. Chinese Journal of Rare Metals, 2011, 35(4): 623−626. doi: 10.3969/j.issn.0258-7076.2011.04.025

    CrossRef Google Scholar

    [46] TORRALVO F A, FERNANDEZ-PEREIRA C, VILLARD E G, et al. Low environmental impact process for germanium recovery from an industrial residue[J]. Minerals Engineering, 2018, 128: 106−114. doi: 10.1016/j.mineng.2018.07.022

    CrossRef Google Scholar

    [47] 时文中, 朱国才. 氯化铵氯化—二酰异羟肟酸萃取法从粉煤灰中提取锗的研究[J]. 河南大学学报(自然科学版), 2007(2): 147−151.

    Google Scholar

    SHI W Z, ZHU G C. Study on extracting germanium from coal ash by chlorination with ammonium chloride and extraction with dihydroxamic acid as extractant[J]. Journal of Henan University(Natural Science), 2007(2): 147−151.

    Google Scholar

    [48] SAFAEI M, FOROUGHI M M, EBRAHIMPOOR N, et al. A review on metal-organic frameworks: Synthesis and applications[J]. Trends in Analytical Chemistry, 2019, 118: 401−425. doi: 10.1016/j.trac.2019.06.007

    CrossRef Google Scholar

    [49] SARMA G K, SEN GUPTA S, BHATTACHARYYA K G. Nanomaterials as versatile adsorbents for heavy metal ions in water: A review[J]. Environmental Science and Pollution Research International, 2019, 26: 6245−6278. doi: 10.1007/s11356-018-04093-y

    CrossRef Google Scholar

    [50] LIU B, JIN N. The applications of ionic liquid as functional material: A review[J]. Current Organic Chemistry, 2016, 20: 2109−2116. doi: 10.2174/1385272820666160527101844

    CrossRef Google Scholar

    [51] CHEN L, WU Y, DONG H, et al. An overview on membrane strategies for rare earths extraction and separation[J]. Separation and Purification Technology, 2018, 197: 70−85. doi: 10.1016/j.seppur.2017.12.053

    CrossRef Google Scholar

    [52] HAGHIGHI H K, IRANNAJAD M, FORTUNY A, et al. Non-dispersive selective extraction of germanium from fly ash leachates using membrane-based processes[J]. Separation Science and Technology, 2019, 54: 2879−2894. doi: 10.1080/01496395.2018.1555170

    CrossRef Google Scholar

    [53] VAN ROOSENDAEL S, ROOSEN J, BANERJEE D, et al. Selective recovery of germanium from iron-rich solutions using a supported ionic liquid phase (SILP)[J]. Separation and Purification Technology, 2019, 221: 83−92. doi: 10.1016/j.seppur.2019.03.068

    CrossRef Google Scholar

    [54] CHANG L, CAO Y, FAN G, et al. A review of the applications of ion floatation: Wastewater treatment, mineral beneficiation and hydrometallurgy[J]. RSC Advances, 2019, 9: 20226−20239. doi: 10.1039/C9RA02905B

    CrossRef Google Scholar

    [55] PATEL M, KARAMALIDIS A K. Germanium: A review of its US demand, uses, resources, chemistry, and separation technologies[J]. Separation and Purification Technology, 2021, 275: 118981. doi: 10.1016/j.seppur.2021.118981

    CrossRef Google Scholar

    [56] MATIS K A, STALIDIS G A, ZOUMBOULIS A I. Flotation of germanium from dilute solutions[J]. Separation Science and Technology, 1988, 23: 347−362. doi: 10.1080/01496398808060709

    CrossRef Google Scholar

    [57] HERNÁNDEZ-EXPÓSITO A, CHIMENOS J M, FERNÁNDEZ A I, et al. Ion flotation of germanium from fly ash aqueous leachates[J]. Chemical Engineering Journal, 2006, 118: 69−75. doi: 10.1016/j.cej.2006.01.012

    CrossRef Google Scholar

    [58] BAYAT S, AGHAZADEH S, NOAPARAST M, et al. Germanium separation and purification by leaching and precipitation[J]. Journal of Central South University, 2016, 23: 2214−2222. doi: 10.1007/s11771-016-3279-6

    CrossRef Google Scholar

    [59] NGUYEN T H, LEE M S. A review on germanium resources and its extraction by hydrometallurgical method[J]. Mineral Processing and Extractive Metallurgy Review, 2020, 42: 406−426.

    Google Scholar

    [60] LIANG D, WANG J, WANG Y, et al. Behavior of tannins in germanium recovery by tannin process[J]. Hydrometallurgy, 2008, 93: 140−142. doi: 10.1016/j.hydromet.2008.03.006

    CrossRef Google Scholar

    [61] 杨芳芳. 含锗浸出液单宁沉淀法提取锗的超声强化技术研究[D]. 昆明: 昆明理工大学, 2021.

    Google Scholar

    YANG F F. Study on ultrasonic intensification of germanium extraction by tannin precipitation from germanium containing leaching solution[D]. Kunming: Kunming University of Science and Technology, 2021.

    Google Scholar

    [62] 王斌. 锗铁渣在含锗烟尘中性浸出时富集锗的研究[J]. 有色金属(冶炼部分), 2002(4): 37−39.

    Google Scholar

    WANG B. Study on germanium enrichment on neuter leaching Ge-containing dust by adding Ge-Fe slag[J]. Nonferrous Metals(Extractive Metallurgy), 2002(4): 37−39.

    Google Scholar

    [63] 张家敏, 雷霆, 张玉林, 等. 从含锗褐煤中干馏提锗和制取焦炭的试验研究[J]. 稀有金属, 2007(3): 371−376.

    Google Scholar

    ZHANG J M, LEI T, ZHANG Y L, et al. Distilling of germanium and preparation of coke from lignite containing germanium[J]. Chinese Journal of Rare Metals, 2007(3): 371−376.

    Google Scholar

    [64] 唐建文, 黄伟兵, 羡鹏飞, 等. 含锗煤烟灰高温还原挥发试验研究[J]. 有色冶金节能, 2020, 36(6): 30−33.

    Google Scholar

    TANG J W, HUANG W B, XIAN P F, et al. Experimental study on the reductive volatilization of germanium from lignite soot at high temperature[J]. Energy Saving of Nonferrous Metallurgy, 2020, 36(6): 30−33.

    Google Scholar

    [65] 冯林永, 雷霆, 张家敏, 等. 含锗褐煤综合利用新工艺研究[J]. 有色金属(冶炼部分), 2008(5): 35−37.

    Google Scholar

    FENG L Y, LEI T, ZHANG J M, et al. A new utilization process for germanium-bearing lignite coal[J]. Nonferrous Metals(Extractive Metallurgy), 2008(5): 35−37.

    Google Scholar

    [66] 荣令坤, 崔保禄, 曹钊, 等. 富锗褐煤干馏过程中锗的配分行为研究[J]. 矿产保护与利用, 2022, 42(3): 8−14.

    Google Scholar

    RONG L K, CUI B L, CAO Z, et al. Study on the partition behaviors of germanium during the carbonization of germanium-rich lignite[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 8−14.

    Google Scholar

    [67] 张家敏, 雷霆, 张玉林, 等. 用干馏方法提取褐煤中锗并制备焦炭的研究[J]. 煤炭科学技术, 2006(12): 69−72.

    Google Scholar

    ZHANG J M, LEI T, ZHANG Y L, et al. Research on dry distilling method applied to germanium(Ge) from lignite and to prepare coke[J]. Coal Science and Technology, 2006(12): 69−72.

    Google Scholar

    [68] 李国娟, 曹洪杨. 褐煤中伴生低品位锗资源化利用研究进展[J]. 矿产综合利用, 2021(2): 52−57. doi: 10.3969/j.issn.1000-6532.2021.02.011

    CrossRef Google Scholar

    LI G J, CAO H Y. Resource utilization of associated low-grade germanium in lignite[J]. Multipurpose Utilization of Mineral Resources, 2021(2): 52−57. doi: 10.3969/j.issn.1000-6532.2021.02.011

    CrossRef Google Scholar

    [69] 许凯. 链条炉炉膛结构对热锗联产锗富集条件影响的CFD模拟[D]. 天津: 天津大学, 2008.

    Google Scholar

    XU K. CFD simulation on enrichment of germanium of chain boiler structure[D]. Tianjin: Tianjin University, 2008.

    Google Scholar

    [70] 张小东, 赵飞燕, 郭昭华, 等. 煤中稀有金属锗的提取技术研究进展[J]. 无机盐工业, 2018, 50(2): 16-19.

    Google Scholar

    ZHANG X D, ZHAO F Y, GUO Z H, et al. Research progress in extraction technology of rare metal germanium in coal[J], Inorganic Chemicals Industry, 2018, 50(2): 16-19.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views(324) PDF downloads(19) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint