Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 Vol. 42, No. 4
Article Contents

TIAN Jinwang, TUO Biyang, WANG Jianli, TANG Yun, NIE Guanghua, YANG Yong, DENG Zhengbin. Photocatalytic Degradation of Simulated Congo Red Wastewater by BiOCl/TiO2/Montmorillonite Composites[J]. Conservation and Utilization of Mineral Resources, 2022, 42(4): 68-75. doi: 10.13779/j.cnki.issn1001-0076.2022.04.008
Citation: TIAN Jinwang, TUO Biyang, WANG Jianli, TANG Yun, NIE Guanghua, YANG Yong, DENG Zhengbin. Photocatalytic Degradation of Simulated Congo Red Wastewater by BiOCl/TiO2/Montmorillonite Composites[J]. Conservation and Utilization of Mineral Resources, 2022, 42(4): 68-75. doi: 10.13779/j.cnki.issn1001-0076.2022.04.008

Photocatalytic Degradation of Simulated Congo Red Wastewater by BiOCl/TiO2/Montmorillonite Composites

More Information
  • In order to solve the problem of easy agglomeration of TiO2 and wide band gap, and improve the photocatalytic degradation rate of Congo Red (CR). BiOCl/TiO2/montmorillonite composites were prepared by hydrolysis and sol-gel methods. Photocatalytic experiments were carried out with Congo Red dye as the target degradation product. The effects of sol pH, mass concentration of montmorillonite suspension, roasting temperature, roasting time and Bi/Ti molar ratio on the photocatalytic activity of the composites were studied, and the composites were characterized by X-ray diffractometer (XRD) and Ultraviolet-visible diffuse reflection spectrum (UV-Vis DRS). The results showed that the BiOCl/TiO2/montmorillonite composite had high photocatalytic activity when the the pH of the sol was 4, the mass concentration of the montmorillonite suspension was 1%, the roasting temperature was 600℃, the roasting time was 2 h, and the molar ratio of Bi/Ti was 20%. The removal rate of Congo Red reached 94.04%. The composite TiO2 exists in the form of anatase crystal phase. The addition of both montmorillonite and BiOCl inhibited the growth of TiO2 crystals. The formation of heterojunction between BiOCl/TiO2 reduced the band gap from 2.89 eV to 2.61 eV, which enhanced the light absorption capacity of composites.

  • 加载中
  • [1] 崔玉民, 殷榕灿. 染料废水处理方法研究进展[J]. 科技导报, 2021, 39(18): 79-87.

    Google Scholar

    CUI Y M, YIN R C. The progress of treatment methods of dye wastewaters[J]. Science & Technology Review, 2021, 39(18): 79-87.

    Google Scholar

    [2] 方涛, 徐霞, 邓丽娟, 等. 光电催化氧化法脱色处理刚果红染料废水[J]. 化工环保, 2014, 34(6): 515-519. doi: 10.3969/j.issn.1006-1878.2014.06.003

    CrossRef Google Scholar

    FANG T, XU X, DENG L J, et al. Decolorization of dye wastewater containing Congo Red by photoelectrocatalytic oxidation process[J]. Environmental Protection of Chemical Industry, 2014, 34(6): 515-519. doi: 10.3969/j.issn.1006-1878.2014.06.003

    CrossRef Google Scholar

    [3] 孙剑辉, 王永奎, 董淑英, 等. 负载型纳米复合半导体WO3-TiO2/AC光催化降解刚果红废水[J]. 环境工程学报, 2009, 3(1): 77-80.

    Google Scholar

    SUN J H, WANG Y K, DONG S Y, et al. Photodegradation of Congo Red solution by supported nano-sized composite sem iconductor WO3-TiO2/AC photocatalyst[J]. Chinese Journal of Environmental Engineering, 2009, 3(1): 77-80.

    Google Scholar

    [4] 许雯, 王宏飞, 陈舒展, 等. 结团絮凝工艺处理两种不同性质染料废水研究[J]. 应用化工, 2019, 48(10): 2289-2293. doi: 10.3969/j.issn.1671-3206.2019.10.005

    CrossRef Google Scholar

    XU W, WANG H F, CHEN S Z, et al. Treatment of two kinds of dye wastewater by using pellet coagulation process[J]. Applied Chemical Industry, 2019, 48(10): 2289-2293. doi: 10.3969/j.issn.1671-3206.2019.10.005

    CrossRef Google Scholar

    [5] 刘承帅, 侯梅芳, 吴志峰, 等. 膨润土理化特性对染料废水脱色效果的影响[J]. 矿产保护与利用, 2004(3): 12-15. doi: 10.3969/j.issn.1001-0076.2004.03.004

    CrossRef Google Scholar

    LIU C S, HOU M F, WU Z F, et al. Effects of physicochemical properties of bentonite on its decolorization for dyeing wastewater[J]. Conservation and Utilization of Mineral Resources, 2004(3): 12-15. doi: 10.3969/j.issn.1001-0076.2004.03.004

    CrossRef Google Scholar

    [6] 秦彬, 谷晋川, 殷萍, 等. 染料废水处理技术研究进展[J]. 化工环保, 2021, 41(1): 9-18. doi: 10.3969/j.issn.1006-1878.2021.01.002

    CrossRef Google Scholar

    QIN B, GU J C, YIN P, et al. Research progresses on dye wastewater treatment technology[J]. Environmental Protection of Chemical Industry, 2021, 41(1): 9-18. doi: 10.3969/j.issn.1006-1878.2021.01.002

    CrossRef Google Scholar

    [7] 王雷阳, 菅傲群, 桑胜波, 等. Au/TiO2薄膜的制备及等离子体光催化性能研究[J]. 化工新型材料, 2018, 46(4): 90-93.

    Google Scholar

    WANG L Y, JIAN A Q, SANG S B, et al. Preparation and plasmonic photocatalytic property of Au/TiO2 thin film[J]. New Chemical Materials, 2018, 46(4): 90-93.

    Google Scholar

    [8] 谢潇琪, 范鹏凯, 刘超. 蒙脱石基复合光催化材料处理有机废水研究进展[J]. 复旦学报(自然科学版), 2022, 61(2): 238-248.

    Google Scholar

    XIE X Q, FAN P K, LIU C, et al. Research progresson montmorillonite-based composite photocatalysts[J]. Journal of Fudan University(Natural Science), 2022, 61(2): 238-248.

    Google Scholar

    [9] 涂盛辉, 陈帆, 孙英豪, 等. C-TiO2/CdS复合纤维膜的制备及光催化产氢性能研究[J]. 化工新型材料, 2022, 50(1): 94-98.

    Google Scholar

    TU S H, CHEN F, SUN Y H, et al. Preparation and photocatalytic hydrogen production of C-TiO2/CdS composite fiber membrane[J]. New Chemical Materials, 2022, 50(1): 94-98.

    Google Scholar

    [10] 程港莉, 胡佩伟, 张炎, 等. 黑色TiO2/高岭石光催化剂的制备及其降解动力学研究[J]. 矿产保护与利用, 2021, 41(3): 166-172.

    Google Scholar

    CHENG G L, HU P W, ZHANG Y, et al. Study on preparation and photocatalytic degradation kinetics of black TiO2/kaolinite composite[J]. Conservation and Utilization of Mineral Resources, 2021, 41(3): 166-172.

    Google Scholar

    [11] KHANIABADI Y O, BASIRI H, NOURMORADI H, et al. Adsorption of Congo red dye from aqueous solutions by montmorillonite as a low-cost adsorbent[J]. International Journal of Chemical Reactor Engineering, 2018, 16(1): 20160203. doi: 10.1515/ijcre-2016-0203

    CrossRef Google Scholar

    [12] 付翔, 徐叶果, 刘方华, 等. TiO2@蒙脱石复合凝胶制备及对染料废水的处理[J]. 非金属矿, 2020, 43(5): 87-90.

    Google Scholar

    FU Y, XU Y G, LIU F H, et al. Preparation of TiO2@montmorillonite composite gel and its treatment for dye wastewater[J]. Non-Metallic Mines, 2020, 43(5): 87-90.

    Google Scholar

    [13] ZENG L, SUN H, PENG T, et al. Comparison of the phase transition and degradation of methylene blue of TiO2, TiO2/montmorillonite mixture and TiO2/montmorillonite composite[J]. Frontiers in Chemistry, 2019, 7: 538. doi: 10.3389/fchem.2019.00538

    CrossRef Google Scholar

    [14] LIANG H, WANG Z, LIAO L, et al. High performance photocatalysts: montmorillonite supported-nano TiO2 composites[J]. Optik, 2017, 136: 44-51. doi: 10.1016/j.ijleo.2017.02.018

    CrossRef Google Scholar

    [15] 张鹏会, 李艳春, 胡浩斌, 等. B、N和Ce共掺杂TiO2光催化降解染料废水研究[J]. 化工新型材料, 2016, 44(3): 229-231.

    Google Scholar

    ZHANG P H, LI Y C, HU H B, et al. Photocatalytic degradation of dye wastewater by titania catalyst codoped with boron, nitrogen, and cerium[J]. New Chemical Materials, 2016, 44(3): 229-231.

    Google Scholar

    [16] 汤晓蕾, 董延茂, 袁妍, 等. 染料敏化TiO2光催化剂的研究进展[J]. 工业水处理, 2021, 41(10): 8-13.

    Google Scholar

    TANG X L, DONG Y M, YUAN Y, et al. Research development of dye-sensitized technology on TiO2 photocatalyst[J]. Industrial Water Treatment, 2021, 41(10): 8-13.

    Google Scholar

    [17] 李翠霞, 金海泽, 杨志忠, 等. 介孔RGO/TiO2复合光催化材料的制备及光催化性能[J]. 无机材料学报, 2017, 32(4): 357-364.

    Google Scholar

    LI C X, JIN H Z, YANG Z Z, et al. Preparation and photocatalytic properties of mesoporous RGO/TiO2 composites[J]. Journal of Inorganic Materials, 2017, 32(4): 357-364.

    Google Scholar

    [18] 何洪波, 张梦凡, 刘珍, 等. F掺杂制备具有高暴露(001)晶面的BiOCl纳米片及其光催化性能[J]. 无机化学学报, 2020, 36(8): 1413-1420.

    Google Scholar

    HE H B, ZHANG M F, LIU Z, et al. Preparation by F doping and photocatalytic activities of BiOCl nanosheets with highly exposed (001) facets[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(8): 1413-1420.

    Google Scholar

    [19] 王磊, 王志军, 王玉廷, 等. BiOCl/TiO2复合材料的可见光活性及机理研究[J]. 环境科学学报, 2015, 35(1): 222-228.

    Google Scholar

    WANG L, WANG Z J, WANG Y T, et al. Photocatalytic ability and mechanism of BiOCl/TiO2 under visible light[J]. Acta Scientiae Circumstantiae, 2015, 35(1): 222-228.

    Google Scholar

    [20] 王立满, 莫伟, 马少健, 等. 高纯钠基蒙脱石的剥离及其表征[J]. 矿产保护与利用, 2020, 40(4): 124-133.

    Google Scholar

    WANG L M, MO W, MA S J, et al. Delaminating and characterizing of high purity sodium montmorillonite[J]. Conservation and Utilization of Mineral Resources, 2020, 40(4): 124-133.

    Google Scholar

    [21] 杨一凡. BiOCl的制备、改性及其光催化性能的研究[D]. 大连: 大连海事大学, 2017.

    Google Scholar

    YANG Y F. Study on the preparation, modification and enhanced photocatalytic activities of BiOCl[D]. Dalian: Dalian Maritime University, 2017.

    Google Scholar

    [22] 刘晓宇. TiO2/BiOCl复合催化剂的制备及其光催化降解性能的研究[D]. 郑州: 华北水利水电大学, 2016.

    Google Scholar

    LIU X Y. Preparation and photocatalytic activity of TiO2/BiOCl nanocomposite[D]. Zhenzhou: North China University of Water Resources and Electric Power, 2016.

    Google Scholar

    [23] 樊启哲, 余长林, 周晚琴, 等. 煅烧温度、时间和气氛对BiOBr结构和光催化性能的影响[J]. 材料热处理学报, 2015, 36(5): 10-16.

    Google Scholar

    FAN Q Z, YU C L, ZHOU W Q, et al. Influence of calcination process on structure and photocatalytic performance of BiOBr[J]. Transactions of Materials and Heat Treatmenta, 2015, 36(5): 10-16.

    Google Scholar

    [24] 黄文鑫, 郏建奎, 李攀杰, 等. BiOCl/TiO2对四环素-铜复合物的光催化降解研究[J]. 南京师大学报(自然科学版), 2020, 43(4): 14-22.

    Google Scholar

    HUANG W X, JIA J K, LI P J, et al. Photocatalytic degradation of tetracycline-copper complex by BiOCl/TiO2[J]. Journal of Nanjing Normal University(Natural Science Edition), 2020, 43(4): 14-22.

    Google Scholar

    [25] 古朝建, 彭同江, 孙红娟, 等. TiO2/蒙脱石纳米复合材料结构组装过程与表征[J]. 人工晶体学报, 2012, 41(3): 771-778.

    Google Scholar

    GU C J, PENG T J, SUN H J, et al. Assembled structure and characterization of TiO2/montmorillonite nano-composites[J]. Journal of Synthetic Crystals, 2012, 41(3): 771-778.

    Google Scholar

    [26] SHINDE D S, BHANGE P D, JHA R K, et al. TiO2 nanoparticles decorated on BiOCl flakes with enhanced visible light photocatalytic activity[J]. Chemistryselect, 2020, 5(8): 2618-2626.

    Google Scholar

    [27] JIANG G H, WANG R J, WANG X H, et al. Novel highly active visible-light-induced photocatalysts based on BiOBr with Ti doping and Ag decorating[J]. Acs Applied Materials & Interfaces, 2012, 4(9): 4440-4444.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(1991) PDF downloads(243) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint