Citation: | TIAN Jinwang, TUO Biyang, WANG Jianli, TANG Yun, NIE Guanghua, YANG Yong, DENG Zhengbin. Photocatalytic Degradation of Simulated Congo Red Wastewater by BiOCl/TiO2/Montmorillonite Composites[J]. Conservation and Utilization of Mineral Resources, 2022, 42(4): 68-75. doi: 10.13779/j.cnki.issn1001-0076.2022.04.008 |
In order to solve the problem of easy agglomeration of TiO2 and wide band gap, and improve the photocatalytic degradation rate of Congo Red (CR). BiOCl/TiO2/montmorillonite composites were prepared by hydrolysis and sol-gel methods. Photocatalytic experiments were carried out with Congo Red dye as the target degradation product. The effects of sol pH, mass concentration of montmorillonite suspension, roasting temperature, roasting time and Bi/Ti molar ratio on the photocatalytic activity of the composites were studied, and the composites were characterized by X-ray diffractometer (XRD) and Ultraviolet-visible diffuse reflection spectrum (UV-Vis DRS). The results showed that the BiOCl/TiO2/montmorillonite composite had high photocatalytic activity when the the pH of the sol was 4, the mass concentration of the montmorillonite suspension was 1%, the roasting temperature was 600℃, the roasting time was 2 h, and the molar ratio of Bi/Ti was 20%. The removal rate of Congo Red reached 94.04%. The composite TiO2 exists in the form of anatase crystal phase. The addition of both montmorillonite and BiOCl inhibited the growth of TiO2 crystals. The formation of heterojunction between BiOCl/TiO2 reduced the band gap from 2.89 eV to 2.61 eV, which enhanced the light absorption capacity of composites.
[1] | 崔玉民, 殷榕灿. 染料废水处理方法研究进展[J]. 科技导报, 2021, 39(18): 79-87. CUI Y M, YIN R C. The progress of treatment methods of dye wastewaters[J]. Science & Technology Review, 2021, 39(18): 79-87. |
[2] | 方涛, 徐霞, 邓丽娟, 等. 光电催化氧化法脱色处理刚果红染料废水[J]. 化工环保, 2014, 34(6): 515-519. doi: 10.3969/j.issn.1006-1878.2014.06.003 FANG T, XU X, DENG L J, et al. Decolorization of dye wastewater containing Congo Red by photoelectrocatalytic oxidation process[J]. Environmental Protection of Chemical Industry, 2014, 34(6): 515-519. doi: 10.3969/j.issn.1006-1878.2014.06.003 |
[3] | 孙剑辉, 王永奎, 董淑英, 等. 负载型纳米复合半导体WO3-TiO2/AC光催化降解刚果红废水[J]. 环境工程学报, 2009, 3(1): 77-80. SUN J H, WANG Y K, DONG S Y, et al. Photodegradation of Congo Red solution by supported nano-sized composite sem iconductor WO3-TiO2/AC photocatalyst[J]. Chinese Journal of Environmental Engineering, 2009, 3(1): 77-80. |
[4] | 许雯, 王宏飞, 陈舒展, 等. 结团絮凝工艺处理两种不同性质染料废水研究[J]. 应用化工, 2019, 48(10): 2289-2293. doi: 10.3969/j.issn.1671-3206.2019.10.005 XU W, WANG H F, CHEN S Z, et al. Treatment of two kinds of dye wastewater by using pellet coagulation process[J]. Applied Chemical Industry, 2019, 48(10): 2289-2293. doi: 10.3969/j.issn.1671-3206.2019.10.005 |
[5] | 刘承帅, 侯梅芳, 吴志峰, 等. 膨润土理化特性对染料废水脱色效果的影响[J]. 矿产保护与利用, 2004(3): 12-15. doi: 10.3969/j.issn.1001-0076.2004.03.004 LIU C S, HOU M F, WU Z F, et al. Effects of physicochemical properties of bentonite on its decolorization for dyeing wastewater[J]. Conservation and Utilization of Mineral Resources, 2004(3): 12-15. doi: 10.3969/j.issn.1001-0076.2004.03.004 |
[6] | 秦彬, 谷晋川, 殷萍, 等. 染料废水处理技术研究进展[J]. 化工环保, 2021, 41(1): 9-18. doi: 10.3969/j.issn.1006-1878.2021.01.002 QIN B, GU J C, YIN P, et al. Research progresses on dye wastewater treatment technology[J]. Environmental Protection of Chemical Industry, 2021, 41(1): 9-18. doi: 10.3969/j.issn.1006-1878.2021.01.002 |
[7] | 王雷阳, 菅傲群, 桑胜波, 等. Au/TiO2薄膜的制备及等离子体光催化性能研究[J]. 化工新型材料, 2018, 46(4): 90-93. WANG L Y, JIAN A Q, SANG S B, et al. Preparation and plasmonic photocatalytic property of Au/TiO2 thin film[J]. New Chemical Materials, 2018, 46(4): 90-93. |
[8] | 谢潇琪, 范鹏凯, 刘超. 蒙脱石基复合光催化材料处理有机废水研究进展[J]. 复旦学报(自然科学版), 2022, 61(2): 238-248. XIE X Q, FAN P K, LIU C, et al. Research progresson montmorillonite-based composite photocatalysts[J]. Journal of Fudan University(Natural Science), 2022, 61(2): 238-248. |
[9] | 涂盛辉, 陈帆, 孙英豪, 等. C-TiO2/CdS复合纤维膜的制备及光催化产氢性能研究[J]. 化工新型材料, 2022, 50(1): 94-98. TU S H, CHEN F, SUN Y H, et al. Preparation and photocatalytic hydrogen production of C-TiO2/CdS composite fiber membrane[J]. New Chemical Materials, 2022, 50(1): 94-98. |
[10] | 程港莉, 胡佩伟, 张炎, 等. 黑色TiO2/高岭石光催化剂的制备及其降解动力学研究[J]. 矿产保护与利用, 2021, 41(3): 166-172. CHENG G L, HU P W, ZHANG Y, et al. Study on preparation and photocatalytic degradation kinetics of black TiO2/kaolinite composite[J]. Conservation and Utilization of Mineral Resources, 2021, 41(3): 166-172. |
[11] | KHANIABADI Y O, BASIRI H, NOURMORADI H, et al. Adsorption of Congo red dye from aqueous solutions by montmorillonite as a low-cost adsorbent[J]. International Journal of Chemical Reactor Engineering, 2018, 16(1): 20160203. doi: 10.1515/ijcre-2016-0203 |
[12] | 付翔, 徐叶果, 刘方华, 等. TiO2@蒙脱石复合凝胶制备及对染料废水的处理[J]. 非金属矿, 2020, 43(5): 87-90. FU Y, XU Y G, LIU F H, et al. Preparation of TiO2@montmorillonite composite gel and its treatment for dye wastewater[J]. Non-Metallic Mines, 2020, 43(5): 87-90. |
[13] | ZENG L, SUN H, PENG T, et al. Comparison of the phase transition and degradation of methylene blue of TiO2, TiO2/montmorillonite mixture and TiO2/montmorillonite composite[J]. Frontiers in Chemistry, 2019, 7: 538. doi: 10.3389/fchem.2019.00538 |
[14] | LIANG H, WANG Z, LIAO L, et al. High performance photocatalysts: montmorillonite supported-nano TiO2 composites[J]. Optik, 2017, 136: 44-51. doi: 10.1016/j.ijleo.2017.02.018 |
[15] | 张鹏会, 李艳春, 胡浩斌, 等. B、N和Ce共掺杂TiO2光催化降解染料废水研究[J]. 化工新型材料, 2016, 44(3): 229-231. ZHANG P H, LI Y C, HU H B, et al. Photocatalytic degradation of dye wastewater by titania catalyst codoped with boron, nitrogen, and cerium[J]. New Chemical Materials, 2016, 44(3): 229-231. |
[16] | 汤晓蕾, 董延茂, 袁妍, 等. 染料敏化TiO2光催化剂的研究进展[J]. 工业水处理, 2021, 41(10): 8-13. TANG X L, DONG Y M, YUAN Y, et al. Research development of dye-sensitized technology on TiO2 photocatalyst[J]. Industrial Water Treatment, 2021, 41(10): 8-13. |
[17] | 李翠霞, 金海泽, 杨志忠, 等. 介孔RGO/TiO2复合光催化材料的制备及光催化性能[J]. 无机材料学报, 2017, 32(4): 357-364. LI C X, JIN H Z, YANG Z Z, et al. Preparation and photocatalytic properties of mesoporous RGO/TiO2 composites[J]. Journal of Inorganic Materials, 2017, 32(4): 357-364. |
[18] | 何洪波, 张梦凡, 刘珍, 等. F掺杂制备具有高暴露(001)晶面的BiOCl纳米片及其光催化性能[J]. 无机化学学报, 2020, 36(8): 1413-1420. HE H B, ZHANG M F, LIU Z, et al. Preparation by F doping and photocatalytic activities of BiOCl nanosheets with highly exposed (001) facets[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(8): 1413-1420. |
[19] | 王磊, 王志军, 王玉廷, 等. BiOCl/TiO2复合材料的可见光活性及机理研究[J]. 环境科学学报, 2015, 35(1): 222-228. WANG L, WANG Z J, WANG Y T, et al. Photocatalytic ability and mechanism of BiOCl/TiO2 under visible light[J]. Acta Scientiae Circumstantiae, 2015, 35(1): 222-228. |
[20] | 王立满, 莫伟, 马少健, 等. 高纯钠基蒙脱石的剥离及其表征[J]. 矿产保护与利用, 2020, 40(4): 124-133. WANG L M, MO W, MA S J, et al. Delaminating and characterizing of high purity sodium montmorillonite[J]. Conservation and Utilization of Mineral Resources, 2020, 40(4): 124-133. |
[21] | 杨一凡. BiOCl的制备、改性及其光催化性能的研究[D]. 大连: 大连海事大学, 2017. YANG Y F. Study on the preparation, modification and enhanced photocatalytic activities of BiOCl[D]. Dalian: Dalian Maritime University, 2017. |
[22] | 刘晓宇. TiO2/BiOCl复合催化剂的制备及其光催化降解性能的研究[D]. 郑州: 华北水利水电大学, 2016. LIU X Y. Preparation and photocatalytic activity of TiO2/BiOCl nanocomposite[D]. Zhenzhou: North China University of Water Resources and Electric Power, 2016. |
[23] | 樊启哲, 余长林, 周晚琴, 等. 煅烧温度、时间和气氛对BiOBr结构和光催化性能的影响[J]. 材料热处理学报, 2015, 36(5): 10-16. FAN Q Z, YU C L, ZHOU W Q, et al. Influence of calcination process on structure and photocatalytic performance of BiOBr[J]. Transactions of Materials and Heat Treatmenta, 2015, 36(5): 10-16. |
[24] | 黄文鑫, 郏建奎, 李攀杰, 等. BiOCl/TiO2对四环素-铜复合物的光催化降解研究[J]. 南京师大学报(自然科学版), 2020, 43(4): 14-22. HUANG W X, JIA J K, LI P J, et al. Photocatalytic degradation of tetracycline-copper complex by BiOCl/TiO2[J]. Journal of Nanjing Normal University(Natural Science Edition), 2020, 43(4): 14-22. |
[25] | 古朝建, 彭同江, 孙红娟, 等. TiO2/蒙脱石纳米复合材料结构组装过程与表征[J]. 人工晶体学报, 2012, 41(3): 771-778. GU C J, PENG T J, SUN H J, et al. Assembled structure and characterization of TiO2/montmorillonite nano-composites[J]. Journal of Synthetic Crystals, 2012, 41(3): 771-778. |
[26] | SHINDE D S, BHANGE P D, JHA R K, et al. TiO2 nanoparticles decorated on BiOCl flakes with enhanced visible light photocatalytic activity[J]. Chemistryselect, 2020, 5(8): 2618-2626. |
[27] | JIANG G H, WANG R J, WANG X H, et al. Novel highly active visible-light-induced photocatalysts based on BiOBr with Ti doping and Ag decorating[J]. Acs Applied Materials & Interfaces, 2012, 4(9): 4440-4444. |
Effect of sol pH on the removal of Congo Red
Effect of mass concentration of montmorillonite suspension on removal of Congo Red
Effect of roasting temperature on removal of Congo Red
Effect of roasting time on removal of Congo Red
Effect of Bi/Ti molar ratio on removal of Congo Red
XRD patterns before and after montmorillonite sodium modification
XRD patterns (a) and partial enlarged drawing (b) of TiO2, BiOCl, TM, BCTM-10, BCTM-15, BCTM-20, BCTM-25 and BCTM-30
UV-Vis DRS spectra (a) and band gap diagram (b) of BiOCl, TiO2, TM, and BCTM-20