Citation: | CHEN Haoran, QI Huiqiang, CHEN Yiren, XIA Kaisheng, LI Zhen. Preparation of Few-layer MoS2 Nanosheets Based on Natural Molybdenite and Its Supercapacitor Properties[J]. Conservation and Utilization of Mineral Resources, 2022, 42(4): 22-29. doi: 10.13779/j.cnki.issn1001-0076.2022.04.003 |
A few-layer of MoS2 nanosheets (F-MoS2) was prepared from natural molybdenite by Na+ ion-assisted liquid phase peeling method. The results showed that the thickness of F-MoS2 nanosheets obtained by peeling was about 1.1-1.5 nm, the number of layers corresponding to MoS2 was 2-3 layers. It was confirmed by electrochemical performance tests that the specific capacitance of F-MoS2 was 73.7 F/g at a current density of 0.25 A/g, which was much higher than that of unstripped molybdenite (9.2 F/g) and commercial MoS2 (19.6 F/g), the significantly increased capacitance of F-MoS2 was mainly attributed to its fully exposed active surface. This research confirms that F-MoS2 obtained through Na+ ion-assisted liquid phase peeling method was a very promising class of energy storage materials.
[1] | 国际钼协会发布: 2021年全球钼产量和消费量[J]. 中国钼业, 2022, 46(2): 24. International molybdenum association: Global molybdenum production and consumption in 2021[J]. China molybdenum industry, 2022, 46(2): 24. |
[2] | 黄凡, 王登红, 陈毓川, 等. 中国内生钼矿床辉钼矿的微量元素特征研究[J]. 矿床地质, 2014, 33(6): 1193-1212. doi: 10.3969/j.issn.0258-7106.2014.06.004 HUANG F, WANG D H, CHEN Y C, et al. Characteristics of trace elements of molybdenite from endogenous molybdenum deposits in China[J]. Mineral deposits, 2014, 33(6): 1193-1212. doi: 10.3969/j.issn.0258-7106.2014.06.004 |
[3] | 高源, 于新刚. 辉钼矿深加工技术及产业分析[J]. 中国资源综合利用, 2014, 32(11): 41-43. GAO Y, YU X G. Molybdenite deep processing technology and industry analysis[J]. Comprehensive utilization of resources in China, 2014, 32(11): 41-43. |
[4] | 徐双, 余春荣. 辉钼精矿提取冶金技术研究进展[J]. 中国钼业, 2019, 43(3): 17-23. doi: 10.13384/j.cnki.cmi.1006-2602.2019.03.004 XU S, YU C R. Research progress in extraction and metallurgy of molybdenite concentrate[J]. China molybdenum industry, 2019, 43(3): 17-23. doi: 10.13384/j.cnki.cmi.1006-2602.2019.03.004 |
[5] | 闻振乾. 辉钼矿电氧化分解过程的研究[D]. 长沙: 中南大学, 2009. WEN Z G. Study on electrooxidation and decomposition process of molybdenite[D]. Changsha: Central South University, 2009. |
[6] | 张文钲. 纳米级二硫化钼的研发现状[J]. 中国钼业, 2000(5): 25-28. ZHANG W Z. Development status of nano-scale molybdenum disulfide[J]. China molybdenum industry, 2000(5): 25-28. |
[7] | 刘旭恒, 陈星宇, 赵中伟, 等. 辉钼矿的造锍熔炼与吹炼[J]. 中国有色金属学报, 2014, 24(6): 1616-1622. doi: 10.19476/j.ysxb.1004.0609.2014.06.028 LIU X H, CHEN X Y, ZHAO Z W, et al. Matte smelting and blowing of molybdenite[J]. The Chinese journal of nonferrous metals, 2014, 24(6): 1616-1622. doi: 10.19476/j.ysxb.1004.0609.2014.06.028 |
[8] | 杨久流. 制备优质辉钼矿精矿的提纯技术[J]. 国外金属矿选矿, 2000(8): 22-24+27. YANG J L. Purification technology for preparation of high quality molybdenite concentrate[J]. Metal ore dressing abroad, 2000(8): 22-24+27. |
[9] | FEDUSCHAK T, AKIMOV A, MOROZOV M, et al. Synthesis and characterization of mechanically activated bulky molybdenum sulphide catalysts[J]. Comptes Rendus Chimie, 2016, 19(10): 1315-1325. |
[10] | RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150. |
[11] | THEERTHAGIRI J, SENTHIL R A, SENTHILKUMAR B, et al. Recent advances in MoS2 nanostructured materials for energy and environmental applications-A review[J]. Journal of Solid State Chemistry, 2017, 252: 43-71. |
[12] | WANG T, CHEN S, PANG H, et al. MoS2-based nanocomposites for electrochemical energy storage[J]. Advanced Science, 2017, 4(2): 1600289. |
[13] | XIA D, GONG F, PEI X, et al. Molybdenum and tungsten disulfides-based nanocomposite films for energy storage and conversion: A review[J]. Chemical Engineering Journal, 2018, 348: 908-928. |
[14] | ZHANG G, LIU H, QU J, et al. Two-dimensional layered MoS2: rational design, properties and electrochemical applications[J]. Energy & Environmental Science, 2016, 9(4): 1190-1209. |
[15] | 王国栋, 蒋丽娟, 李来平, 等. 二硫化钼润滑剂应用研究进展[J]. 中国钼业, 2013, 37(5): 10-14. WANG G D, JIANG L J, LI L P, et al. Progress in application of molybdenum disulfide lubricant[J]. China molybdenum industry, 2013, 37(5): 10-14. |
[16] | 张文钲. 发掘中的二硫化钼新用途[J]. 中国钼业, 1997(Z1): 126-128. WHANG W Z. New uses of molybdenum disulfide in excavation[J]. China molybdenum industry, 1997(Z1): 126-128. |
[17] | 张文钲. 二硫化钼润滑剂研究进展[J]. 中国钼业, 2006(5): 3-7. ZHANG W Z. Research progress of molybdenum disulfide Lubricant[J]. China molybdenum industry, 2006(5): 3-7. |
[18] | MAK K F, MCGill K L, PARK J, et al. The valley Hall effect in MoS2 transistors[J]. Science, 2014, 344(6191): 1489-1492. |
[19] | LOPEZ-SANCHEZ O, LEMBKE D, KAYCI M, et al. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nature Nanotechnology, 2013, 8(7): 497-501. |
[20] | LEE J, MAK K F, SHAN J. Electrical control of the valley Hall effect in bilayer MoS2 transistors[J]. Nature Nanotechnology, 2016, 11(5): 421-425. |
[21] | YAN Y, XIA B Y, XU Z C, et al. Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction[J]. ACS Catalysis, 2014, 4(6): 1693-1705. |
[22] | WANG T, CHEN S, PANG H, et al. MoS2-based nanocomposites for electrochemical energy storage[J]. Advanced Science, 2017, 4(2): 1600289. |
[23] | XIA D, GONG F, PEI X, et al. Molybdenum and tungsten disulfides-based nanocomposite films for energy storage and conversion: a review[J]. Chemical Engineering Journal, 2018, 348: 908-928. |
[24] | ZHANG G, LIU H, QU J, et al. Two-dimensional layered MoS2: rational design, properties and electrochemical applications[J]. Energy & Environmental Science, 2016, 9(4): 1190-1209. |
[25] | BELLO I T, OLADIPO O, ADEDOKUN O, et al. Recent advances on the preparation and electrochemical analysis of MoS2-based materials for supercapacitor applications: a mini-review[J]. Materials Today Communications, 2020, 25: 101664. |
[26] | GENG X, ZHANG Y, HAN Y, et al. Two-dimensional water-coupled metallic MoS2 with nanochannels for ultrafast supercapacitors[J]. Nano Letters, 2017, 17(3): 1825-1832. |
[27] | WANG D, XIAO Y, LUO X, et al. Swollen ammoniated MoS2 with 1T/2H hybrid phases for high-rate electrochemical energy storage[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2509-2515. |
[28] | LI J, GAO D, WANG J, et al. Ball-milling MoS2/carbon black hybrid material for catalyzing hydrogen evolution reaction in acidic medium[J]. Journal of Energy Chemistry, 2015, 24(5): 608-613. |
[29] | BANG G S, NAM K W, KIM J Y, et al. Effective liquid-phase exfoliation and sodium ion battery application of MoS2 nanosheets[J]. ACS Appl Mater Interfaces, 2014, 6(10): 7084-7089. |
Structure (a) and three crystal configurations (b) of MoS2
Schematic diagram of the process for the preparation of F-MoS2 dispersion from molybdenite
SEM photo of the original molybdenite
XRD pattern of high purity molybdenite delicate powder
XRD comparison of F-MoS2 and primitive molybdenite
SEM photos (a, b) and TEM photos (c, d) of F-MoS2
AFM photos of F-MoS2 before (a) and after (b) wash
CV curves of natural molybdenite, F-MoS2 and commercial MoS2 electrode materials: 5 mV/s (a), 50 mV/s (b)
(a) Charge-discharge curves of F-MoS2 at different current densities; (b) Charge and discharge curves of natural molybdenite, F-MoS2 and commercial MoS2 electrodes at 0.25 A/g; (c) Magnification performance curves for each sample; (d) EIS curves for each sample