Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 Vol. 42, No. 4
Article Contents

PENG Tongjiang, SUN Hongjuan, DING Wenjin, LUO Liming, LIU Bo. The Role of Non-metallic Minerals and Non-metallic Mineral Materials in the Carbon Peaking and Carbon Neutrality Goals[J]. Conservation and Utilization of Mineral Resources, 2022, 42(4): 1-10. doi: 10.13779/j.cnki.issn1001-0076.2022.04.001
Citation: PENG Tongjiang, SUN Hongjuan, DING Wenjin, LUO Liming, LIU Bo. The Role of Non-metallic Minerals and Non-metallic Mineral Materials in the Carbon Peaking and Carbon Neutrality Goals[J]. Conservation and Utilization of Mineral Resources, 2022, 42(4): 1-10. doi: 10.13779/j.cnki.issn1001-0076.2022.04.001

The Role of Non-metallic Minerals and Non-metallic Mineral Materials in the Carbon Peaking and Carbon Neutrality Goals

  • This paper is focused on the physical and chemical properties, functional properties, service processes for energy saving and carbon reduction of the non-metallic minerals and mineral materials. The principle of energy saving and carbon reduction and its role in the dual carbon strategy are expounded in six aspects: the natural output properties, fluxing properties, thermal insulation properties, gelling properties, catalysis and carrier properties, application substitution properties and new mineral materials research and development. In the development of non-metallic minerals and non-metallic mineral materials, it is necessary to establish the energy-saving and consumption-reducing theories and technical systems of non-metallic ores and non-metallic mineral materials themselves under the guidance of the dual carbon strategy. It is necessary to establish technical standards and specifications for prospecting evaluation based on the physical and chemical properties and processable properties of non-metallic minerals. In the utilization of non-metallic minerals, it is necessary to strengthen the deep processing technology of non-metallic minerals, especially the high-purification technology. It is necessary to carry out key planning and breakthroughs in non-metallic mineral thermal insulation materials, flux materials, cementitious materials, catalyst and carrier materials, and new energy mineral materials. Non-metallic minerals and non-metallic mineral materials play an important role in the field of energy saving and carbon reduction technology, and can make a significant contribution to the realization of the "dual carbon" goal.

  • 加载中
  • [1] 习近平. 在第七十五届联合国大会一般性辩论上的讲话[EB/OL]. https://www.ccps.gov.cn/xxsxk/zyls/202009/t20200922_143558.shtml.

    Google Scholar

    XI J P. Full text of Xi's statement at the general debate of the 75th session of the united nations general assembly[EB/OL]. https://www.ccps.gov.cn/xxsxk/zyls/202009/t20200922_143558.shtml.

    Google Scholar

    [2] 田煦, 周开灿, 文化川. 非金属矿产地质学[M]. 武汉: 武汉工业大学出版社, 1989.

    Google Scholar

    TIAN X, ZHOU K C, WEN H C. Geology of nonmetallic minerals[M]. Wuhan: Wuhan University of Technology Press, 1989.

    Google Scholar

    [3] 胡兆扬, 于延棠, 徐立铨. 非金属矿工业手册[M]. 北京: 冶金工业出版社, 1992.

    Google Scholar

    HU Z Y, YU Y T, XU L Q. Nonmetallic minerals industry handbook[M]. Beijing: Metallurgical Industry Press, 1992.

    Google Scholar

    [4] 吕国诚, 廖立兵, 李雨鑫, 等. 快速发展的我国矿物材料研究——十年进展(2011—2020年)[J]. 矿物岩石地球化学通报, 2020, 39(4): 714-725.

    Google Scholar

    LV G C, LIAO L B, LI Y X, et al. Rapid development of the mineral materials research in China——progress in the past decade (2011—2020)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(4): 714-725.

    Google Scholar

    [5] 塔桂欣. 非金属矿物材料在无机保温材料中的应用[J]. 建筑技术开发, 2020, 47(18): 146-147. doi: 10.3969/j.issn.1001-523X.2020.18.072

    CrossRef Google Scholar

    TA G X. Application of non-metallic mineral materials in inorganic thermal insulation materials[J]. Building Technique Development, 2020, 47(18): 146-147. doi: 10.3969/j.issn.1001-523X.2020.18.072

    CrossRef Google Scholar

    [6] 张旭, 章国权, 杨炳飞. 天然多孔矿物材料在土壤改良和土壤环境修复中的应用及研究进展[J]. 中国土壤与肥料, 2020(4): 223-230.

    Google Scholar

    ZHANG X, ZHANG G Q, YANG B F. Application and research progress of natural porous mineral materials in soil improvement and soil environmental rehabilitation[J]. Soils and Fertilizers Sciences in China, 2020(4): 223-230.

    Google Scholar

    [7] 吴春香, 宋鹏程, 孙红娟, 等. 温石棉及尾矿资源化利用研究进展[J]. 中国非金属矿工业导刊, 2014(4): 6-9. doi: 10.3969/j.issn.1007-9386.2014.04.002

    CrossRef Google Scholar

    WC C X, SONG P C, SUN H J, et al. Research progress on resource utilization of chrysotile and tailings[J]. China Non-metallic Mining Industry, 2014(4): 6-9. doi: 10.3969/j.issn.1007-9386.2014.04.002

    CrossRef Google Scholar

    [8] 张文强, 高言, 刘高峰. 中南半岛饰面大理石的主要特征及资源潜力探讨[J]. 中国非金属矿工业导刊, 2021(5): 60-64. doi: 10.3969/j.issn.1007-9386.2021.05.015

    CrossRef Google Scholar

    ZHANG W Q, GAO Y, LIU G F. Discussion on main characteristics and resource potential of veneer marble in indochina peninsula[J]. China Non-metallic Mining Industry, 2021(5): 60-64. doi: 10.3969/j.issn.1007-9386.2021.05.015

    CrossRef Google Scholar

    [9] FREITAS E, ALMEIDA H, VIEIRA M. Binary adsorption of zinc and copper on expanded vermiculite using a fixed bed column[J]. Applied Clay Science, 2017, 146: 503-509.

    Google Scholar

    [10] STAWINSKI W, WEGRZYN A, MORDARSKI G, et al. Sustainable adsorbents formed from by-product of acid activation of vermiculite and leached-vermiculite-LDH hybrids for removal of industrial dyes and metal cations[J]. Applied Clay Science, 2018, 161: 6-14.

    Google Scholar

    [11] 彭同江, 孙红娟, 孙金梅, 等. 金云母-蛭石间层矿物阳离子交换容量的影响因素研究[J]. 矿物岩石, 2009, 29(1): 14-19. doi: 10.3969/j.issn.1001-6872.2009.01.003

    CrossRef Google Scholar

    PENG T J, SUN H J, SUN J M, et al. Research on the affecting factors of cation exchanging capacity of phlogopite -vermiculite interstratified mineral[J]. Journal of mineralogy and petrology, 2009, 29(1): 14-19. doi: 10.3969/j.issn.1001-6872.2009.01.003

    CrossRef Google Scholar

    [12] 王力, 主曦曦. 矿物基多孔材料的制备及其吸附研究进展[J]. 材料导报, 2013, 27(5): 48-51. doi: 10.3969/j.issn.1005-023X.2013.05.010

    CrossRef Google Scholar

    WANG L, ZHU X X. Review on preparation and adsorption of mineral-based porous material[J]. Materials Review, 2013, 27(5): 48-51. doi: 10.3969/j.issn.1005-023X.2013.05.010

    CrossRef Google Scholar

    [13] 寇明月, 刘文静, 傅玲子, 等. 典型矿物材料对水中磷吸附性能的对比研究[J]. 当代化工, 2020, 49(7): 1347-1355. doi: 10.13840/j.cnki.cn21-1457/tq.2020.07.023

    CrossRef Google Scholar

    KOU M Y, LIU W J, FU L Z, et al. Comparative study on the adsorption properties of typical mineral materials for phosphorus in water[J]. Contemporary Chemical Industry, 2020, 49(7): 1347-1355. doi: 10.13840/j.cnki.cn21-1457/tq.2020.07.023

    CrossRef Google Scholar

    [14] KONG M, LEE Y. Carbonation of chrysotile under subduction conditions[J]. Engineering, 2019(5): 490-497.

    Google Scholar

    [15] 张红林, 王翠翠, 杨辉, 等. 非金属矿物材料在无机保温材料中的应用及进展[J]. 中国非金属矿工业导刊, 2019(4): 7-9. doi: 10.3969/j.issn.1007-9386.2019.04.003

    CrossRef Google Scholar

    ZHANG H L, WANG C C, YANG H, et al. Application and progress of non-metallic materials in inorganic insulation materials[J]. China Non-metallic Mining Industry, 2019(4): 7-9. doi: 10.3969/j.issn.1007-9386.2019.04.003

    CrossRef Google Scholar

    [16] RASHAD, ALAA M. Vermiculite as a construction material-A short guide for civil engineer[J]. Construction & Building Materials, 2016, 125: 53-62.

    Google Scholar

    [17] 彭同江, 孙红娟, 罗利明, 等. 工业蛭石的矿物学属性及在"双碳"战略中的作用[J]. 矿产保护与利用, 2021, 41(6): 1-8.

    Google Scholar

    PENG T J, SUN H J, LUO L M, et al. The mineralogical properties of industrial vermiculite and its role in the strategy of saving energy and reducing CO2 emission[J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 1-8.

    Google Scholar

    [18] 刘福生, 彭同江, 张宝述. 膨胀蛭石的利用及其新进展[J]. 非金属矿, 2001, 24(4): 5-7.

    Google Scholar

    LIU F S, PENG T J, ZHANG B S. Utilization of expanded vermiculite and its new progression[J]. Non-Metallic Mines, 2001, 24(4): 5-7.

    Google Scholar

    [19] 解颜岩, 孙红娟, 彭同江, 等. 膨胀蛭石的化学-微波法制备及其膨胀率与柔韧性的关系[J]. 硅酸盐学报, 2020, 48(8): 1325-1332.

    Google Scholar

    XIE Y Y, SUN H J, PENG T J, et al. Preparation of expanded vermiculite via chemical-microwave method and correlation between expansion rate and flexibility[J]. Journal of the Chinese Ceramic Society, 2020, 48(8): 1325-1332.

    Google Scholar

    [20] 徐帅, 周张健, 张笑歌, 等. 新型无机保温材料的研究进展[J]. 硅酸盐通报, 2015, 34(5): 1302-1306.

    Google Scholar

    XU S, ZHOU Z J, ZHANG X G, et al. Research progress of new inorganic insulation materials[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(5): 1302-1306.

    Google Scholar

    [21] 唐芳, 刘阳平, 黄建华. 传统保温材料与新型保温材料对比及选用原则[J]. 应用能源技术, 2018(11): 6-9.

    Google Scholar

    TANG F, LIU Y P, HUANG J H. Comparison and selection principles of traditional thermal insulation materials and new thermal insulation materials[J]. Applied Energy Technology, 2018(11): 6-9.

    Google Scholar

    [22] 胡素芳, 陈代璋. 新型膨胀珍珠岩保温材料的研究[J]. 中国非金属矿工业导刊, 2000(1): 17-18.

    Google Scholar

    HU S F, CHEN D Z. Research on new expanded perlite thermal insulation material[J]. China Non-Metallic Mining Industry Herald, 2000(1): 17-18.

    Google Scholar

    [23] 孙志坚, 孙玮, 傅加林, 等. 国内绝热保温材料现状及发展趋势[J]. 能源工程, 2001(4): 26-28.

    Google Scholar

    SUN Z J, SUN W, FU J L, et al. Current status and development of thermal insulating materials in China[J]. Energy Engineering, 2001(4): 26-28.

    Google Scholar

    [24] 习永广, 彭同江. 膨胀蛭石/石膏复合保温材料的制备与表征[J]. 复合材料学报, 2011, 28(5): 156-161.

    Google Scholar

    XI Y G, PENG T J. Preparation and characterization of expanded vermiculite/gypsum thermal insulation composites[J]. Acta Materiae Compositae Sinica, 2011, 28(5): 156-161.

    Google Scholar

    [25] 王皓, 马志斌, 廖洪强, 等. 高温下多种工业固体废弃物复配体系的熔融特性研究[J]. 硅酸盐通报, 2017, 36(1): 296-300.

    Google Scholar

    WANG H, MA Z B, LIAO H Q, et al. Melting characteristics of complex of different types of industrial solid waste at high temperature[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(1): 296-300.

    Google Scholar

    [26] 陆宏权, 李寒旭, 马飞, 等. 钙基助熔剂对煤灰熔融性影响及熔融机理研究[J]. 煤炭科学技术, 2011, 39(2): 111-114.

    Google Scholar

    LU H Q, LI H X, MA F, et al. Study on fly ash fusibility affected by calcium base flux and fusion mechanism[J]. Coal Science And Technology, 2011, 39(2): 111-114.

    Google Scholar

    [27] 邱兰清. 国外蛇纹石粉矿的开发利用[J]. 化工矿山技术, 1991, 20(4): 57-58.

    Google Scholar

    QIU L Q. Development and utilization of serpentine powder ore abroad[J]. Journal of Chemical Mining Technology, 1991, 20(4): 57-58.

    Google Scholar

    [28] 李银. 助熔剂对磷矿碳热还原反应的工艺及机理研究[D]. 昆明: 昆明理工大学, 2018.

    Google Scholar

    LI Y. Study on the process and mechanism of the carbothermal reduction of phosphate rock by flux[D]. Kunming: Kunming University of Science and Technology, 2018.

    Google Scholar

    [29] 李敬, 张寿庭, 商朋强, 等. 萤石资源现状及战略性价值分析[J]. 矿产保护与利用, 2019, 39(6): 62-68.

    Google Scholar

    LI J, ZHANG S T, SHANG P Q, et al. Present situation and analysis of strategic value of fluorite resource[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 62-68.

    Google Scholar

    [30] 耿锐仙, 夏举佩, 杨劲, 等. 钾长石助熔磷矿石碳热反应热力学分析与评价[J]. 化学工程, 2017, 45(8): 54-59.

    Google Scholar

    GENG L X, XIA J P, YANG J, et al. Thermodynamic analysis and evaluation of thermal reaction of phosphate ore with K-feldspar fluxing[J]. Chemical Engineering, 2017, 45(8): 54-59.

    Google Scholar

    [31] 谢国俊. 多措并举全力做好水泥行业节能降碳工作[J]. 中国水泥, 2022(4): 49-52.

    Google Scholar

    XIE G J. Take multiple measures to do a good job in energy saving and carbon reduction in the cement industry[J]. China Cement, 2022(4): 49-52.

    Google Scholar

    [32] 崔建勤, 周应庆, 梁保靖, 等. 大宗资源化利用脱硫石膏生产高强高精度砌块的实践[J]. 新型建筑材料, 2022, 49(4): 90-93.

    Google Scholar

    CUI J Q, ZHOU Y Q, LIANG B J, et al. The practice of using desulfurized gypsum to produce high-strength and high-precision blocks as bulk resources utilization[J]. New Building Materials, 2022, 49(4): 90-93.

    Google Scholar

    [33] 丁德文. 石灰生产工艺创新与应用[J]. 中国氯碱, 2022(6): 44-47.

    Google Scholar

    DING D W. Innovation and application of lime production technology[J]. China Chlor-Alkali, 2022(6): 44-47.

    Google Scholar

    [34] 王少阳, 祁欣, 罗旭东, 等. 白云石的应用进展[J]. 耐火材料, 2022, 56(1): 88-92.

    Google Scholar

    WANG S Y, QI X, LUO X D, et al. Application progress of dolomite[J]. Refractories, 2022, 56(1): 88-92.

    Google Scholar

    [35] 张鹏. 黏土矿物基催化剂的界面设计与催化性能调控[D]. 长春: 吉林大学, 2020.

    Google Scholar

    ZHANG P. Study on interface of clay-based catalysts and regulation of catalytic performance[D]. Changchun: Jilin University, 2020.

    Google Scholar

    [36] 尹成彬, 方继敏. 新型环境材料水钠锰矿应用研究进展[J]. 云南化工, 2020, 47(2): 15-16.

    Google Scholar

    YIN C B, FANG J M. Research progress on application of new environmental materials in birnessite[J]. Yunnan Chemical Technology, 2020, 47(2): 15-16.

    Google Scholar

    [37] 蓁滢. 人工/天然催化材料非均相活化H2O2的合理设计与评估: 用于有机污染修复[D]. 上海: 华东理工大学, 2020.

    Google Scholar

    QIN Y. Design and process evaluation of heterogeneous activation of H2O2 by artificial/natural catalytic materials: for organic pollution remediation[D]. Shanghai: East China University of Science and Technology, 2020.

    Google Scholar

    [38] 王炫, 陈俊涛, 陆银平, 等. 改性高岭土基非均相Fenton催化剂降解罗丹明B染料废水的研究[J]. 化工新型材料, 2018, 46(11): 208-211.

    Google Scholar

    WANG X, CHEN J T, LU Y P, et al. Research of modified kaolin based heterogeneous Fenton catalyst degrading rhodamine B dye in wastewater[J]. New Chemical Materials, 2018, 46(11): 208-211.

    Google Scholar

    [39] 何璐红. 蒙皂族黏土材料在催化中的应用述评[J]. 盐科学与化工, 2018, 47(5): 4-7.

    Google Scholar

    HE L H. Application review of smectite clay in catalysis[J]. Journal of Salt and Chemical Industry, 2018, 47(5): 4-7.

    Google Scholar

    [40] 刘姗姗. 高岭土基固体酸催化剂的研制及应用[D]. 郑州: 河南大学, 2016.

    Google Scholar

    LIU S S. Preparation and application of Kaolin-based solid acid catalyst[D]. Zhengzhou: Henan University, 2016.

    Google Scholar

    [41] 何磊, 么秋香, 孙鸣, 等. 二维(2D)沸石与三维(3D)沸石的制备及催化研究进展[J]. 化学学报, 2022, 80(2): 180-198.

    Google Scholar

    HE L, ME Q X, SUN M, et al. Progress in preparation and catalysis of two-dimensional(2D) and three-dimensional(3D) zeolites[J]. Acta Chimica Sinica, 2022, 80(2): 180-198.

    Google Scholar

    [42] 发展研究编辑部. 光催化助力"双碳"目标多领域赋能清洁生活—专访中国工程院院士、福建省人民政府顾问、福州大学校长付贤智[J]. 发展研究, 2022, 39(5): 1-6.

    Google Scholar

    Editorial office of development studies. Photocatalysis helps the "dual-carbon" target to empower clean life in multiple fields - an exclusive interview with Fu Xianzhi, academician of the Chinese Academy of Engineering, advisor to the Fujian Provincial People's Government, and president of Fuzhou University[J]. Development Research, 2022, 39(5): 1-6.

    Google Scholar

    [43] 王程. 光催化活性环境矿物材料的制备及应用研究[D]. 武汉: 武汉理工大学, 2005.

    Google Scholar

    WANG C. Study on the preparation and application of photocatalytic active environmental mineral materials[D]. Wuhan: Wuhan University of Technology, 2005.

    Google Scholar

    [44] 吕霞, 彭同江, 孙红娟, 等. TiO2/蒙脱石复合物中纳米TiO2的相变与光催化性能[J]. 人工晶体学报, 2013, 42: 290-298.

    Google Scholar

    LV X, PENG T J, SUN H J, et al. Phase transition and photocatalytic properties of TiO2 in TiO2/montmorillonite nano-composite[J]. Journal of Synthetic Crystals, 2013, 42: 290-298.

    Google Scholar

    [45] 肖青, 孙红娟, 彭同江, 等. 石墨相氮化碳/蒙脱石复合材料的制备及其可见光催化性能[J]. 合成化学, 2020, 28(2): 91-98.

    Google Scholar

    XIAO Q, SUN H J, PENG T J, et al. Preparation and visible photocatalytic properties of g-C3N4/montmorillonite composites[J]. Chinese Journal of Synthetic Chemistry, 2020, 28(2): 91-98.

    Google Scholar

    [46] 孙志明, 张欣超, 狄永浩, 等. 多孔矿物复合催化材料研究进展与发展趋势[J]. 化工矿物与加工, 2021, 50(12): 42-48.

    Google Scholar

    SUN Z M, ZHANG X C, DI Y H, et al. Research progress and development trend of porous minerals-bearing composite catalysis materials[J]. Industrial Minerals & Processing, 2021, 50(12): 42-48.

    Google Scholar

    [47] 肖力光, 张晓彤, 闫刚, 等. 硅藻土/TiO2/氧化石墨烯复合材料的制备及其光催化性能研究[J]. 人工晶体学报, 2019, 48(4): 712-717.

    Google Scholar

    XIAO L G, ZHANG X T, YAN G, et al. Preparation and the photocatalytic properties of diatomite/TiO2/graphene oxide composite materials[J]. Journal of Synthetic Crystals, 2019, 48(4): 712-717.

    Google Scholar

    [48] 李瑶, 彭同江, 孙红娟, 等. Cu-TiO2/白云母纳米复合材料的制备及结构, 形貌和光催化性能[J]. 硅酸盐学报, 2019, 47(4): 480-485.

    Google Scholar

    LI Y, PENG T J, SUN H J, et al. Photocatalytic properties of Cu-TiO2/muscovite nanocomposites[J]. Journal of the Chinese Ceramic Society, 2019, 47(4): 480-485.

    Google Scholar

    [49] 曾鹂, 彭同江, 孙红娟, 等. LaNi1-xFexO3钙钛矿型氧化物的制备与光催化降解性能[J]. 合成化学, 2021, 21(5): 368-374.

    Google Scholar

    ZENG L, PENG T J, SUN H J, et al. Preparation and photocatalytic degradation performance of LaNi1-xFexO3 perovskite oxide[J]. Chinese Journal of Synthetic Chemistry, 2021, 21(5): 368-374.

    Google Scholar

    [50] 鲁安怀, 王长秋, 李艳. 环境矿物学研究进展(2011—2020年)[J]. 矿物岩石地球化学通报, 2020, 39(5): 881-898.

    Google Scholar

    LU A H, WANG C Q, LI Y. Research progress of environmental mineralogy (2011—2020)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(5): 881-898.

    Google Scholar

    [51] 鲁安怀, 李艳, 丁竑瑞, 等. 天然矿物光电效应: 矿物非经典光合作用[J]. 地学前缘, 2020, 27(5): 179-194.

    Google Scholar

    LU A H, LI Y, DING H R, et al. Natural mineral photoelectric effect: non-classical mineral photosynthesis[J]. Earth Science Frontiers, 2020, 27(5): 179-194.

    Google Scholar

    [52] 韩梦瑶, 熊焦, 刘卫东. 中国光伏发电的时空分布, 竞争格局及减排效益[J]. 自然资源学报, 2022, 37(5): 1338-1351.

    Google Scholar

    HAN M Y, XIONG J, LIU W D. Spatio-temporal distribution, competitive development and emission reduction of China's photovoltaic power generation[J]. Journal of Natural Resources, 2022, 37(5): 1338-1351.

    Google Scholar

    [53] 王明菊, 王辉. 太阳能光伏发电技术现状与发展探讨[J]. 能源与节能, 2021, 7: 37-38.

    Google Scholar

    WANG M J, WANG H. Discussion on status and development of solar photovoltaic power generation technology[J]. Energy and Conservation, 2021, 7: 37-38.

    Google Scholar

    [54] ZHANG H, YANG Y, REN D, et al. Graphite as anode materials: fundamental mechanism, recent progress and advances[J]. Energy Storage Materials, 2021, 36: 147-170.

    Google Scholar

    [55] CHUNG D. Review graphite[J]. Journal of materials science, 2002, 37(8): 1475-1489.

    Google Scholar

    [56] OLABI A G, ABDELKAREEM M A, WILBERFORCE T, et al. Application of graphene in energy storage device-a review[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110026.

    Google Scholar

    [57] 孔玥, 黄燕山, 罗宇, 等. 石墨烯基复合材料在新能源转换与存储领域的应用现状, 关键问题及展望[J]. 化工进展, 2021, 40(9): 5118-5131.

    Google Scholar

    KONG Y, HUANG Y S, LUO Y, et al. Application status, key issues and prospects of graphene-based composite materials in the field of new energy conversion and storage industry[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5118-5131.

    Google Scholar

    [58] 叶琳, 苏睿婷. 石墨烯在能源存储装置中的应用和发展[J]. 工业技术创新, 2020, 7(1): 97-102.

    Google Scholar

    YE L, SU R T. Application and development of graphene in energy storage device[J]. Industrial Technology Innovation, 2020, 7(1): 97-102.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(3257) PDF downloads(77) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint