Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 Vol. 42, No. 3
Article Contents

XIAO Wei, YU Junfu, YANG Wei, LONG Tao, DENG Sha, LU Hang. Research Progress on Flotation Reagents of Primary Rutile Ore[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 82-90. doi: 10.13779/j.cnki.issn1001-0076.2022.03.012
Citation: XIAO Wei, YU Junfu, YANG Wei, LONG Tao, DENG Sha, LU Hang. Research Progress on Flotation Reagents of Primary Rutile Ore[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 82-90. doi: 10.13779/j.cnki.issn1001-0076.2022.03.012

Research Progress on Flotation Reagents of Primary Rutile Ore

More Information
  • Primary rutile ore in China has the characteristics of complex mineral composition, low grade of target mineral and fine disseminated grain size. Flotation is an important means of recovering and utilizing rutile and improving its grade, among which flotation reagent is the key. The collectors of flotation rutile mainly include fatty acid, phosphonic acid, arsine acid and hydroxamic acid, and the regulator can be divided into activator and inhibitor. To promote the progress of rutile mineral processing technology, as well as the theory of ore dressing workers to provide technical reference, based on the overview of the rutile ore properties, micro-nano flotation and flotation difficulties, the research progress and action mechanism of collectors, inhibitors and activators were summarized in detail to deepen the understanding of primary rutile flotation reagents, and the future research directions of reagents were also prospected.

  • 加载中
  • [1] 陈骞. 榴辉岩型金红石浮选药剂制度及作用机理研究[D]. 武汉: 武汉理工大学, 2020.

    Google Scholar

    CHEN Q. Study on flotation separation scheme of rutile from eclogite ore and adsorption mechanism of agents on mineral surface[D]. Wuhan: Wuhan University of Technology, 2020.

    Google Scholar

    [2] 吴贤, 张健. 中国的钛资源分布及特点[J]. 钛工业进展, 2006(6): 8-12. doi: 10.3969/j.issn.1009-9964.2006.06.004

    CrossRef Google Scholar

    WU X, ZHANG J. Distribution and characteristics of titanium resources in China[J]. Progress in Titanium Industry, 2006(6): 8-12. doi: 10.3969/j.issn.1009-9964.2006.06.004

    CrossRef Google Scholar

    [3] 胡克俊. 钛资源开发及产品利用状况[J]. 中国金属通报, 2007(16): 2-6.

    Google Scholar

    HU K J. Development and utilization of titanium resources[J]. China Metals Bulletin, 2007(16): 2-6.

    Google Scholar

    [4] 汪镜亮. 颜料二氧化钛的应用及当前钛矿物的需求[J]. 矿产综合利用, 1992(4): 13-22.

    Google Scholar

    WANG J L. Application of pigment titanium dioxide and current demand of titanium minerals[J]. Comprehensive Utilization of Mineral Resources, 1992(4): 13-22.

    Google Scholar

    [5] 邓国珠. 世界钛资源及其开发利用现状[J]. 钛工业进展, 2002(5): 9-12. doi: 10.3969/j.issn.1009-9964.2002.05.003

    CrossRef Google Scholar

    DENG G Z. Status quo of development and utilization of titanium resources in the world[J]. Progress in Titanium Industry, 2002(5): 9-12. doi: 10.3969/j.issn.1009-9964.2002.05.003

    CrossRef Google Scholar

    [6] 王立平, 王镐, 高颀, 等. 我国钛资源分布和生产现状[J]. 稀有金属, 2004(1): 265-267. doi: 10.3969/j.issn.0258-7076.2004.01.065

    CrossRef Google Scholar

    WANG L P, WANG H, GAO Q, et al. Distribution and production status of titanium resources in China[J]. Rare Metals, 2004(1): 265-267. doi: 10.3969/j.issn.0258-7076.2004.01.065

    CrossRef Google Scholar

    [7] 王勇海. 榴辉岩型金红石矿选矿工艺研究[D]. 长沙: 中南大学, 2010.

    Google Scholar

    WANG Y H. Study on mineral processing of eclogite-type rutile ore[D]. Changsha: Central South University, 2010.

    Google Scholar

    [8] 李洪强, 苗呈佶, 翁孝卿, 等. 金红石与石榴石浮选分离试验研究[J]. 金属矿山, 2018(5): 84-87.

    Google Scholar

    LI H Q, MIAO C J, WENG X Q, et al. Experimental study on flotation Separation of Rutile and garnet[J]. Metal Mine, 2018(5): 84-87.

    Google Scholar

    [9] 张云, 管永诗, 田玉珍. 我国金红石矿资源开发利用现状[J]. 矿产保护与利用, 2000(5): 27-30. doi: 10.3969/j.issn.1001-0076.2000.05.007

    CrossRef Google Scholar

    ZHANG Y, GUAN Y S, TIAN Y Z. Status quo of exploitation and utilization of rutile resources in China[J]. Conservation and Utilization of Mineral Resources, 2000(5): 27-30. doi: 10.3969/j.issn.1001-0076.2000.05.007

    CrossRef Google Scholar

    [10] 常田仓, 章晓林, 赵文迪, 等. 金红石选矿技术研究综述[J]. 矿产保护与利用, 2019, 39(5): 167-173.

    Google Scholar

    CHANG T C, ZHANG X L, ZHAO W D, et al. Review on beneficiation technology of rutile[J]. Conservation and Utilization of Mineral Resources, 2019, 39(5): 167-173.

    Google Scholar

    [11] 吴婧, 秦善, 罗泽敏, 等. 热处理金红石晶体结构及其光催化活性分析[J]. 高校地质学报, 2011, 17(1): 118-124. doi: 10.3969/j.issn.1006-7493.2011.01.016

    CrossRef Google Scholar

    WU J, QIN S, LUO Z M, et al. Crystal structure and photocatalytic activity of heat-treated rutile[J]. Geological journal of China universities, 2011, 17(1): 118-124. doi: 10.3969/j.issn.1006-7493.2011.01.016

    CrossRef Google Scholar

    [12] 张木辰, 赵喜民, 李伟. 方城金红石矿带五间房矿床地质特征[J]. 河南地质, 1993(2): 81-86.

    Google Scholar

    ZHAN M C, ZHAO X M, LI W. Geological characteristics of Wujianfang deposit in Fangcheng rutile belt[J]. Henan Geology, 1993(2): 81-86.

    Google Scholar

    [13] HONAKER R. Nanobubble generation and its application in froth flotation (part Ⅰ): nanobubble generation and its effects on properties of microbubble and millimeter scale bubble solutions[J]. Mining Science and Technology, 2010, 20(1): 1-19.

    Google Scholar

    [14] ASHUTOSH A, WUN J N, YU L. Principle and applications of microbubble and nanobubble technology for water treatment[J]. Chemosphere, 2011, 84(9): 30-48.

    Google Scholar

    [15] DONGPING T, AHMED S. Nanobubble effects on hydrodynamic interactions between particles and bubbles[J]. Powder Technology, 2019, 346: 101-134.

    Google Scholar

    [16] 肖巍. 枣阳微细粒难选原生金红石矿强化浮选分离机理[M]. 北京: 冶金工业出版社, 2019.7.

    Google Scholar

    XIAO W. Enhanced flotation separation mechanism of Zaoyang micro-fine refractory primary rutile Ore[M]. Beijing: Metallurgical Industry Press, 2019. 7.

    Google Scholar

    [17] 赵西泽. 西安户县金红石矿地质特征及矿石选矿试验[J]. 非金属矿, 1995(6): 14-16.

    Google Scholar

    ZHAO X Z. Geological characteristics and beneficiation test of rutile ore in Huxian county, Xi'an[J]. Non-metallic Ores, 1995(6): 14-16.

    Google Scholar

    [18] 万丽, 高玉德. 山东某金红石矿石浮选试验研究[J]. 金属矿山, 2013(12): 70-72.

    Google Scholar

    WAN L, GAO Y D. Experimental research on flotation of a rutile ore in Shandong[J]. Metal Mine, 2013(12): 70-72.

    Google Scholar

    [19] 王军, 程宏伟, 赵红波, 等. 油酸钠作用下金红石的浮选行为及作用机理[J]. 中国有色金属学报, 2014, 24(3): 820-825.

    Google Scholar

    WANG J, CHENG H W, ZHAO H B, et al. Flotation behavior and mechanism of rutile under sodium oleate[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(3): 820-825.

    Google Scholar

    [20] PAN C, J H Z, W S, et al. The activation mechanism of lead ions in the flotation of ilmenite using sodium oleate as a collector[J]. Minerals Engineering, 2017, 111.

    Google Scholar

    [21] 冯其明, 席振伟, 张国范, 等. 脂肪酸捕收剂浮选钛铁矿性能研究[J]. 金属矿山, 2009(5): 46-49. doi: 10.3321/j.issn:1001-1250.2009.05.012

    CrossRef Google Scholar

    FENG Q M, X Z W, Z G F, et al. Research on flotation performance of ilmenite by fatty acid collector[J]. Metal Mine, 2009(5): 46-49. doi: 10.3321/j.issn:1001-1250.2009.05.012

    CrossRef Google Scholar

    [22] 张庆鹏, 刘润清, 曹学锋, 等. 脂肪酸类白钨矿捕收剂的结构性能关系研究[J]. 有色金属科学与工程, 2013, 4(5): 85-90.

    Google Scholar

    ZHAN Q P, LIU R Q, CAO X F, et al. Study on structure and properties of fatty acid scheelite collector[J]. Non-ferrous Metals Science and Engineering, 2013, 4(5): 85-90.

    Google Scholar

    [23] 沈智慧, 张覃, 卯松, 等. 脂肪酸结构对胶磷矿表面润湿性的影响研究[J]. 矿产保护与利用, 2018(3): 105-111.

    Google Scholar

    SHEN Z H, ZHAN Q, MAO S, et al. Effect of fatty acid structure on surface wettability of collophosphite[J]. Conservation and Utilization of Mineral Resources, 2018(3): 105-111.

    Google Scholar

    [24] 杨耀辉. 白钨矿浮选过程中脂肪酸类捕收剂的混合效应[D]. 长沙: 中南大学, 2010.

    Google Scholar

    YAN Y H. Mixing effect of fatty acid collectors in scheelite flotation process[D]. Changsha: Central South University, 2010.

    Google Scholar

    [25] 江庆梅. 混合脂肪酸在白钨矿与萤石、方解石分离中的作用[D]. 长沙: 中南大学, 2009.

    Google Scholar

    JIANG Q M. Effects of mixed fatty acids on separation of scheelite from fluorite and calcite[D]. Changsha: Central South University, 2009.

    Google Scholar

    [26] 江庆梅, 戴子林. 混合脂肪酸在白钨矿与萤石、方解石分离中的作用[J]. 矿冶工程, 2012, 32(2): 42-44. doi: 10.3969/j.issn.0253-6099.2012.02.011

    CrossRef Google Scholar

    JIANG Q M, DAI Z L. Effect of mixed fatty acids on separation of scheelite from fluorite and calcite[J]. Mining and metallurgy engineering, 2012, 32(2): 42-44. doi: 10.3969/j.issn.0253-6099.2012.02.011

    CrossRef Google Scholar

    [27] C. S M, John C W. Some copolymers of dimethyl 1-propene-2-phosphonate and of 1-phenylvinylphosphonic acid[J]. Journal of Polymer Science, 1952, 8(2): 10-18.

    Google Scholar

    [28] I. N T, A. K B, G. V S, et al. Synthesis and pharmacological activity of alkylphosphonic and oxy derivatives[J]. Pharmaceutical Chemistry Journal, 1988, 22(2): 31-40.

    Google Scholar

    [29] 彭勇军, 许时, 刘奇. 复合捕收剂浮选原生金红石矿的研究[J]. 有色金属, 1995(2): 34-40.

    Google Scholar

    PENG Y J, XU S, LIU Q. Study on flotation of primary rutile ore with compound collector[J]. Nonferrous Metals, 1995(2): 34-40.

    Google Scholar

    [30] 肖巍, 杨娟, 胡聪, 等. 正辛醇对苯乙烯膦酸浮选金红石过程的影响[J]. 矿冶工程, 2019, 39(6): 35-38. doi: 10.3969/j.issn.0253-6099.2019.06.008

    CrossRef Google Scholar

    XIAO W, YANG J, HU C, et al. Effect of n-octanol on the flotation process of styrene phosphonic acid rutile[J]. Mining and metallurgy engineering, 2019, 39(6): 35-38. doi: 10.3969/j.issn.0253-6099.2019.06.008

    CrossRef Google Scholar

    [31] XIAO T H, WEI X, HONG B Z, et al. Hydrophobic flocculation flotation of rutile fines in presence of styryl phosphonic acid[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(7): 1424-1432. . doi: 10.1016/S1003-6326(18)64781-8

    CrossRef Google Scholar

    [32] 杜岩. 烷胺双甲基膦酸浮选金红石的研究[J]. 矿冶工程, 1993(2): 34-37.

    Google Scholar

    DU Y. Study on flotation of rutile by alkylamine dimethylphosphonic acid[J]. Mining and Metallurgy Engineering, 1993(2): 34-37.

    Google Scholar

    [33] 王雅静. 安康难选金红石矿选矿试验研究[D]. 昆明: 昆明理工大学, 2006.

    Google Scholar

    WANG Y J. Experimental study on beneficiation of Ankang refractory rutile ore[D]. Kunming: Kunming University of Science and Technology, 2006.

    Google Scholar

    [34] 黄余. 铅离子作用下混合捕收剂对金红石的浮选机理研究[D]. 昆明: 昆明理工大学, 2019.

    Google Scholar

    HUANG Y. Study on the flotation mechanism of rutile with mixed collector under the action of lead ions[D]. Kunming: Kunming University of Science and Technology, 2019.

    Google Scholar

    [35] 崔林, 刘均彪. 金红石和石榴石浮选分离的研究[J]. 化工矿山技术, 1986(5): 32-33.

    Google Scholar

    CUI L, LIU J B. Study on flotation separation of rutile and garnet[J]. Chemical Mining Technology, 1986(5): 32-33.

    Google Scholar

    [36] 刘贝, 王军, 覃文庆, 等. 湖北枣阳细粒原生金红石矿浮选分离研究[J]. 有色金属(选矿部分), 2014(6): 38-42. doi: 10.3969/j.issn.1671-9492.2014.06.010

    CrossRef Google Scholar

    LIU B, WANG J, QIN W Q, et al. Flotation separation of fine primary rutile ore from Zaoyang in Hubei Province[J]. Nonferrous Metals (Mineral Processing Section, 2014(6): 38-42. doi: 10.3969/j.issn.1671-9492.2014.06.010

    CrossRef Google Scholar

    [37] 李晔, 许时. 提高胂酸对金红石浮选性能的研究[J]. 中国矿业, 1997(2): 58-61.

    Google Scholar

    LI Y, XU S. Study on improving the flotation performance of rutile by arsenic acid[J]. China Mining, 1997(2): 58-61.

    Google Scholar

    [38] 刘均彪, 崔林. 钛铁矿、金红石的浮选理论及实践[J]. 有色金属, 1987(2): 34-40.

    Google Scholar

    LIU J B, CUI L. Flotation theory and practice of Ilmenite and rutile[J]. Nonferrous Metals, 1987(2): 34-40.

    Google Scholar

    [39] 朱建光. 浮选金红石用的捕收剂和调整剂[J]. 国外金属矿选矿, 2008(2): 3-8.

    Google Scholar

    ZHU J G. Collector and regulator for flotation of rutile[J]. Metal Ore Dressing Abroad, 2008(2): 3-8.

    Google Scholar

    [40] 唐清. C-8羟肟酸的合成及其浮选性能研究[D]. 长沙: 中南大学, 2014.

    Google Scholar

    TANG Q. Synthesis of C-8 hydroxamic acid and its flotation performance[D]. Changsha: Central South University, 2014.

    Google Scholar

    [41] 张宝元. 羟肟酸类捕收剂的合成及其对钛铁矿的浮选性能研究[D]. 长沙: 中南大学, 2011.

    Google Scholar

    ZHANG Y B. Synthesis of hydroxamic acid collector and its flotation performance on ilmenite[D]. Changsha: Central South University, 2011.

    Google Scholar

    [42] 朱诗曼, 李怡霏, 张喆怡, 等. 羟肟酸类捕收剂浮选金红石特性及其机理[J]. 矿产保护与利用, 2021, 41(4): 59-63.

    Google Scholar

    ZHU S M, LI Y F, ZHANG Z Y, et al. Flotation characteristics and mechanism of rutile with hydroxamic acid collectors[J]. Conservation and Utilization of Mineral Resources, 2022, 41(4): 50-63.

    Google Scholar

    [43] JUN W, HONG W C, HONG B Z, et al. Flotation behavior and mechanism of rutile with nonyl hydroxamic acid[J]. Rare Metals, 2016, 35(5): 419-424. doi: 10.1007/s12598-014-0386-0

    CrossRef Google Scholar

    [44] QIN W Q, REN L Y, XU Y B, et al. Adsorption mechanism of mixed salicylhydroxamic acid and tributyl phosphate collectors in fine cassiterite electro-flotation system[J]. Journal of Central South University, 2012, 19(6): 1711-1717. doi: 10.1007/s11771-012-1197-9

    CrossRef Google Scholar

    [45] 贺智明, 董雍赓. 水杨氧肟酸浮选金红石的机理研究[J]. 矿产保护与利用, 1995(1): 25-29.

    Google Scholar

    HE Z M, DONG Y G. Study on flotation mechanism of rutile by salicylic oxime acid[J]. Conservation and Utilization of Mineral Resources, 1995(1): 25-29.

    Google Scholar

    [46] 姬俊梅. 烷基羟肟酸盐与铌铁金红石的作用机理研究[J]. 有色金属(选矿部分), 2004(4): 42-44. doi: 10.3969/j.issn.1671-9492.2004.04.012

    CrossRef Google Scholar

    JI J M. Study on the interaction mechanism between alkyl hydroxamate and niobium ferric rutile[J]. Nonferrous Metals (Mineral Processing Section), 2004(4): 42-44. doi: 10.3969/j.issn.1671-9492.2004.04.012

    CrossRef Google Scholar

    [47] 李洪强, 母顺兴, 张艳清, 等. 乳化煤油在金红石与石榴石浮选分离中的增效作用研究[J]. 金属矿山, 2018(3): 97-101.

    Google Scholar

    LI H Q, MU S X, ZHANG Y Q, et al. Study on synergism of emulsified Kerosene in flotation separation of rutile and garnet[J]. Metal Mine, 2018(3): 97-101.

    Google Scholar

    [48] 周源, 高崇峰. 某难选含金矿石的载体浮选研究[J]. 江西有色金属, 2000(4): 12-14. doi: 10.3969/j.issn.1674-9669.2000.04.004

    CrossRef Google Scholar

    ZHOU Y, GAO C F. Research on carrier flotation of a refractory gold-bearing ore[J]. Jiangxi Nonferrous Metals, 2000(4): 12-14. doi: 10.3969/j.issn.1674-9669.2000.04.004

    CrossRef Google Scholar

    [49] 朱申红, 荀志运, 冯婕, 等. 浮选氟碳铈矿的捕收剂及药剂混用的研究[J]. 金属矿山, 2000(8): 32-34. doi: 10.3321/j.issn:1001-1250.2000.08.011

    CrossRef Google Scholar

    ZHU S H, XUN Z Y, FENG J, et al. Study on the mixture of collector and reagent of flotation bastnaesite[J]. Metal Mine, 2000(8): 32-34. doi: 10.3321/j.issn:1001-1250.2000.08.011

    CrossRef Google Scholar

    [50] CYRIL M, OLIVIER D, PIERRE B. Ion foam flotation of neodymium: from speciation to extraction[J]. Journal of Molecular Liquids, 253(2018): 217-227.

    Google Scholar

    [51] Chemical Engineering; study data from Wuhan University of technology update understanding of chemical engineering (Rutile flotation with Pb2+ ions as activator: Adsorption of Pb2+ at rutile/water interface)[J]. Journal of Engineering, 506(2016): 431-437.

    Google Scholar

    [52] 贺智明, 董雍赓, 孙笈. 铅离子对水杨氧肟酸浮选金红石的活化作用研究[J]. 有色金属, 1994(4): 43-48.

    Google Scholar

    HE Z M, DONG Y G, SUN J. Study on the activation of lead ion on salicylic acid flotation rutile[J]. Nonferrous Metals, 1994(4): 43-48.

    Google Scholar

    [53] 刘明宝, 鱼博, 魏锐, 等. Pb2+活化金红石的界面热力学和动力学机制[J]. 有色金属工程, 2018, 8(1): 71-76. doi: 10.3969/j.issn.2095-1744.2018.01.015

    CrossRef Google Scholar

    LIU M B, YU B, WEI R, et al. Interfacial thermodynamics and kinetics of Pb2+activated rutile[J]. Nonferrous Metals Engineering, 2018, 8(1): 71-76. doi: 10.3969/j.issn.2095-1744.2018.01.015

    CrossRef Google Scholar

    [54] 张蕾, 刘雪岩, 姜晓庆, 等. 纳米TiO2对钼(Ⅵ)的吸附性能[J]. 中国有色金属学报, 2010, 20(2): 301-307.

    Google Scholar

    ZHANG L, LIU X Y, JIANG X Q, et al. Adsorption of molybdenum (ⅵ) by TiO2[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(2): 301-307.

    Google Scholar

    [55] WEI X, PAN C, QIAN N L, et al. Adsorption behavior and mechanism of Bi (Ⅲ) ions on rutile-water interface in the presence of nonyl hydroxamic acid[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(2): 89.

    Google Scholar

    [56] QI C F, WEN J Z, SHU M W, et al. Activation mechanism of lead ions in cassiterite flotation with salicylhydroxamic acid as collector[J]. Separation and Purification Technology, 2017, 178.

    Google Scholar

    [57] QIN B C, XIU M C, QI C F, et al. Activation mechanism of lead ion in the flotation of stibnite[J]. Minerals Engineering, 2018(119): 173-182.

    Google Scholar

    [58] P. F A B, A. P C, A. B L, et al. The use of dextrin in purification by flotation of molybdenite concentrates[J]. International Journal of Mineral Processing, 2014(127): 23-27.

    Google Scholar

    [59] 李晔, 刘奇, 许时. 矿物表面金属离子组分与糊精的相互作用(Ⅲ)——糊精存在时萤石/方解石、萤石/金红石的浮选分离[J]. 化工矿山技术, 1994(6): 23-25.

    Google Scholar

    LI Ye, LIU Q, XU S. Interaction between metal Ion components on mineral surface and dextrin (Ⅲ)-flotation separation of fluorite/calcite and fluorite/rutile in the presence of dextrin[J]. Chemical Mining Technology, 1994(6): 23-25.

    Google Scholar

    [60] 马光荣. 变质岩微细粒金红石浮选研究[J]. 有色金属(选矿部分), 1989(3): 12-13.

    Google Scholar

    MA G R. Study on flotation of metamorphic rock micro-fine rutile[J]. Nonferrous Metals (Mineral Processing Section), 1989(3): 12-13.

    Google Scholar

    [61] 丁浩, 崔林. 六偏磷酸钠在金红石与硅钙质矿物浮选分离中的作用机理[J]. 有色金属, 1991(4): 33-40.

    Google Scholar

    DING H, CUI L. Mechanism of sodium hexametaphosphate in flotation separation of rutile and silica-calcareous minerals[J]. Nonferrous Metals, 1991(4): 33-40.

    Google Scholar

    [62] 丁浩. 金红石浮选中消除Ca2+对石英活化作用的研究[J]. 矿产保护与利用, 1994(1): 40-42.

    Google Scholar

    DING H. Study on eliminating Ca2+on quartz activation in rutile flotation[J]. Conservation and Utilization of Mineral Resources, 1994(1): 40-42.

    Google Scholar

    [63] 丁浩, 任瑞晨, 邓雁希, 等. 金红石与石榴石浮选分离及调整剂作用机理[J]. 辽宁工程技术大学学报, 2007(5): 787-790.

    Google Scholar

    DING H, REN R C, DENG Y X, et al. Flotation separation of rutile and garnet and mechanism of regulator[J]. Journal of Liaoning Technical University, 2007(5): 787-790.

    Google Scholar

    [64] 岳铁兵. 细粒金红石的浮选分离研究[D]. 沈阳: 东北大学, 2006.

    Google Scholar

    YUE T B. Study on the floatation of fine rutile ore[D]. Shenyang: Northeastern University, 2006.

    Google Scholar

    [65] 徐玉琴, 欧阳坚, 卢寿慈. 金红石与一水硬铝石的浮选分离[J]. 矿产综合利用, 1996(4): 1-6.

    Google Scholar

    XU Y Q, OUYANG J, LU S C. Flotation separation of rutile and diaspore[J]. Multipurpose Utilization of Mineral Resources, 1996(4): 1-6.

    Google Scholar

    [66] 丁浩. 金红石与磷灰石浮选分离中硫酸铝的作用研究[J]. 化工矿山技术, 1997(3): 13-16.

    Google Scholar

    DING H. Study on the effect of aluminum sulfate in flotation separation of rutile and apatite[J]. Chemical Mining Technology, 1997(3): 13-16.

    Google Scholar

    [67] 高利坤. 微细粒难选金红石矿的选矿试验研究[D]. 昆明: 昆明理工大学, 2003.

    Google Scholar

    GAO L K. Experimental study on beneficiation of micro-fine refractory rutile ore[D]. Kunming: Kunming University of Science and Technology, 2003.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(3080) PDF downloads(208) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint