Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 Vol. 42, No. 3
Article Contents

YANG Zhizhao, YANG Siqi, XIE Fanxin, HU Xin, ZHANG Yongbing, ZHOU Hepeng, LUO Xianping. Study on Comprehensive Recovery of Lithium Mica and Feldspar from Low Grade Lepidolite Ore in Yifeng of Jiangxi[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 24-29. doi: 10.13779/j.cnki.issn1001-0076.2022.03.004
Citation: YANG Zhizhao, YANG Siqi, XIE Fanxin, HU Xin, ZHANG Yongbing, ZHOU Hepeng, LUO Xianping. Study on Comprehensive Recovery of Lithium Mica and Feldspar from Low Grade Lepidolite Ore in Yifeng of Jiangxi[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 24-29. doi: 10.13779/j.cnki.issn1001-0076.2022.03.004

Study on Comprehensive Recovery of Lithium Mica and Feldspar from Low Grade Lepidolite Ore in Yifeng of Jiangxi

More Information
  • The lepidolite ore in Yifeng area of Jiangxi Province is seriously weathered and the occurrence form of minerals is complex. The theoretical grade of Li2O in lepidolite is low. In order to realize the efficient recovery of lithium and feldspar from the lepidolite ore, the detail beneficiation test research was carried out. The results showed that the process of desliming-flotation-magnetic separation was adopted. First, the raw ore was deslimed to reduce the cover of fine gangue minerals on the surface of lithium mica. Then, the flotation of lithium mica with highly selective collector ZY could effectively separate lepidolite from gangue minerals. The lepidolite concentrate with Li2O content of 1.73% and recovery rate of 75.87% was obtained. After iron removal from flotation tailings by high gradient magnetic separation with magnetic field intensity of 1.5 T, the feldspar concentrate with operation yield of 94.31%, Na2O 5.78%, K2O 3.08%, Fe2O3 0.07% and whiteness of 67.21% could be obtained and used as ceramic material. The process had achieved good beneficiation indexes for the treatment of lepidolite ore, and realized the comprehensive recovery of lepidolite and feldspar.

  • 加载中
  • [1] 李少平, 张俊敏, 迪里努尔·阿不都卡得, 等. 锂云母浮选捕收剂研究现状及展望[J]. 矿产保护与利用, 2020, 40(6): 77-82.

    Google Scholar

    LI S P, ZHANG J M, DILINUER A, et al. Research status and prospect of lepidolite flotation collectors[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6) : 77-82.

    Google Scholar

    [2] 李承元, 李勤, 朱景和. 世界锂资源的开发应用现状及展望[J]. 国外金属矿选矿, 2001(8): 22-26.

    Google Scholar

    LI C Y, LI Q, ZHU J H. Development and application status and prospect of lithium resources in the world[J]. Metallic Ore Dressing Abroad, 2001(8): 22-26.

    Google Scholar

    [3] HANNA V, SIMON D, MIKAEL H. Lithium availability and future production outlooks[J]. Applied Energy, 2013, 110(110): 252-266.

    Google Scholar

    [4] 吕子虎, 赵登魁, 沙惠雨, 等. 阴阳离子组合捕收剂浮选锂云母的试验研究[J]. 矿产保护与利用, 2017(2): 81-84.

    Google Scholar

    LV Z H, ZHAO D K, SHA H Y, et al. Experimental study on flotation of lepidolite with cation anion combined collector[J]. Conservation and Utilization of Mineral Resources, 2017(2): 81-84.

    Google Scholar

    [5] LI J, HUANG X L, HE P L, et al. In situ analyses of micas in the Yashan granite, south China: constraints onmagmatic and hydrothermal evolutions of W and Ta-Nb bearing granites[J]. Ore Geology Reviews, 2015, 65: 793-810. doi: 10.1016/j.oregeorev.2014.09.028

    CrossRef Google Scholar

    [6] JAERYEONG L. Extraction of lithium from lepidolite using mixed grinding with sodium sulfide followed by water leaching[J]. Minerals, 2015, 5(4): 737-743. doi: 10.3390/min5040521

    CrossRef Google Scholar

    [7] THI T, VAN T, RETO G, et al. Extraction of lithium from lepidolite via iron sulphide roasting and water leaching[J]. Hydrometallurgy, 2015, 153: 154-159. doi: 10.1016/j.hydromet.2015.03.002

    CrossRef Google Scholar

    [8] 刘丽君, 王登红, 刘喜方, 等. 国内外锂矿主要类型、分布特点及勘查开发现状[J]. 中国地质, 2017, 44(2): 263-278.

    Google Scholar

    LIU L J, WANG D H, LIU X F, et al. Main types, distribution characteristics and exploration and development status of lithium deposits at home and abroad[J]. Geology in China, 2017, 44(2): 263-278.

    Google Scholar

    [9] 朱文龙, 黄万抚. 国内外锂矿物资源概况及其选矿工艺综述[J]. 现代矿业, 2010, 26(7): 1-4. doi: 10.3969/j.issn.1674-6082.2010.07.001

    CrossRef Google Scholar

    ZHU W L, HUANG W F. Overview of lithium mineral resources at home and abroad and its beneficiation process[J]. Modern Mining, 2010, 26(7): 1-4. doi: 10.3969/j.issn.1674-6082.2010.07.001

    CrossRef Google Scholar

    [10] 方霖, 郭珍旭, 刘长淼, 等. 云母矿物浮选研究进展[J]. 中国矿业, 2015, 24(3): 131-136. doi: 10.3969/j.issn.1004-4051.2015.03.029

    CrossRef Google Scholar

    FANG L, GUO Z X, LIU C M, et al. Research progress of mica mineral flotation[J]. China Mining, 2015, 24(3): 131-136. doi: 10.3969/j.issn.1004-4051.2015.03.029

    CrossRef Google Scholar

    [11] 岳紫龙, 李宏建, 周亚飞. 江西某钽铌矿浮选药剂调整研究[J]. 中国矿山工程, 2006, 35(5): 7-9.

    Google Scholar

    YUE Z L, LI H J, ZHOU Y F. Study on flotation reagent adjustment of a tantalum niobium ore in Jiangxi[J]. China Mining Engineering, 2006, 35(5): 7-9.

    Google Scholar

    [12] 何桂春, 冯金妮, 毛美心, 等. 组合捕收剂在锂云母浮选中的应用研究[J]. 非金属矿, 2013(4): 29-31.

    Google Scholar

    HE G C, FENG J N, MAO M X, et al. Application of combined collector in lithium mica flotation[J]. Non-metallic Mines, 2013(4): 2931.

    Google Scholar

    [13] 周贺鹏, 张永兵, 雷梅芬, 等. 磁选尾矿综合回收钽铌锂及长石选矿工艺研究[J]. 非金属矿, 2018, 41(3): 69-71.

    Google Scholar

    ZHOU H P, ZHANG Y B, LEI M F, et al. Study on beneficiation process of comprehensive recovery of tantalum, niobium, lithium and feldspar from magnetic separation tailings[J]. Non-metallic Mines, 2018, 41(3): 69-71.

    Google Scholar

    [14] 张慧婷. 十二胺和油酸组合捕收剂在锂云母表面吸附的分子动力学模拟[D]. 赣州: 江西理工大学, 2017.

    Google Scholar

    ZHANG H T. Molecular dynamics simulation of adsorption of dodecylamine and oleic acid combined collector on the surface of lithium mica[D]. Ganzhou: Jiangxi University of Science and Technology, 2017.

    Google Scholar

    [15] 艾光华, 严华山, 吴艺鹏, 等. 综合回收某含钽铌锂云母矿的选矿试验研究[J]. 非金属矿, 2014(4): 4-6.

    Google Scholar

    AI G H, YAN H S, WU Y P, et al. Experimental study on mineral processing of comprehensive recovery from a Ta-Nb lepidolite ore[J]. Non-metallic Mines, 2014(4): 4-6.

    Google Scholar

    [16] 冯金妮. 锂云母高效捕收剂的选择及机理研究[D]. 赣州: 江西理工大学, 2013.

    Google Scholar

    FENG J N. Study on the selection and mechanism of lithium mica high efficiency collector[D]. Ganzhou: Jiangxi University of Science and Technology, 2013.

    Google Scholar

    [17] 周贺鹏, 张永兵, 雷梅芬, 等. 江西宜春高铁锂云母矿浮选分离试验研究[J]. 非金属矿, 2019, 42(4): 64-67.

    Google Scholar

    ZHOU H P, ZHANG Y B, LEI M F, et al. Flotation separation test of zinnwaldite in Yichun of Jiangxi[J]. Non-metallic Mines, 2019, 42(4): 64-67.

    Google Scholar

    [18] 谭超兵. 新疆云母超细磨矿及磨矿机理研究[D]. 武汉: 武汉理工大学, 2003.

    Google Scholar

    TAN C B. Study on ultrafine grinding and grinding mechanism of mica in Xinjiang[D]. Wuhan: Wuhan University of Technology, 2003.

    Google Scholar

    [19] 李利娟, 张凡. 某钽铌重选尾矿中的锂云母浮选试验研究[J]. 矿业研究与开发, 2013, 33(2): 57-59+109.

    Google Scholar

    LI L J, ZHANG F. Experimental study on lithium mica flotation in a tantalum niobium gravity separation tailings[J]. Mining Research and Development, 2013, 33(2): 57-59+109.

    Google Scholar

    [20] 周贺鹏, 耿亮, 郭亮, 等. 江西宜春低品位锂云母矿综合回收工艺研究[J]. 非金属矿, 2020, 43(4): 59-61+98.

    Google Scholar

    ZHOU H P, GENG L, GUO L, et al. Study on comprehensive recovery process of low-grade lepidolite ore in Yichun, Jiangxi[J]. Non-metallic Mines, 2020, 43(4): 59-61+98.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(6)

Article Metrics

Article views(2487) PDF downloads(163) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint