Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 Vol. 42, No. 3
Article Contents

WU Xu, ZHANG Yanqing, CAO Zhao. Study on Mechanism of Composite Collectors and Combined Inhibitors in Flotation Separation Experiments of Micro-fine Monaziteand Fluorite[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 1-7. doi: 10.13779/j.cnki.issn1001-0076.2022.03.001
Citation: WU Xu, ZHANG Yanqing, CAO Zhao. Study on Mechanism of Composite Collectors and Combined Inhibitors in Flotation Separation Experiments of Micro-fine Monaziteand Fluorite[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 1-7. doi: 10.13779/j.cnki.issn1001-0076.2022.03.001

Study on Mechanism of Composite Collectors and Combined Inhibitors in Flotation Separation Experiments of Micro-fine Monaziteand Fluorite

More Information
  • To improve the flotation separation of micro-fine (-15 μm) monazite and fluorite, the flotation test, XPS test, and microaggregation analysis were used to investigate the application effect and mechanism of the combined inhibitors sodium silicate + ethylenediamine tetraacetic acid (EDTA) and composite collectors octyl hydroxamic acid (OHA) + octylphenol ethoxylate (OP) in flotation tests. The results showed that employing the combined inhibitors and composite collectors for the artificial mixed ores of -15 μm monazite and fluorite with a mass ratio of 1 GA6FA 1, a flotation concentrate with a recovery of 80% monazite and 24.4% fluorite was obtained. Furthermore, as compared to results obtained with only a single inhibitor or collector, both the flotation recovery of monazite and the flotation separation of monazite from fluorite were significantly improved. Additionally, EDTA was able to complex and remove Ca2+ ions from the surface of monazite, as well as facilitate the selective inhibition of fluorite by inhibitors. OP and OHA could synergistically adsorb on monazite surface, promoting hydrophobic agglomeration of micro-fine monazite and thereby improving the flotation recovery of monazite.

  • 加载中
  • [1] 杨斌清, 张贤平. 世界稀土生产与消费结构分析[J]. 稀土, 2014, 5(1): 110-118.

    Google Scholar

    YANG B Q, ZHANG X P. Analysis of global rare earth production and consumption structure[J]. Chinese Rare Earths, 2014, 5(1): 110-118.

    Google Scholar

    [2] BINNEMANS K, JONES P T, BLANPAIN B, et al. Recycling of rare earths: a critical review[J]. Journal of Cleaner Production, 2013, 51: 1-22. doi: 10.1016/j.jclepro.2012.12.037

    CrossRef Google Scholar

    [3] JORDENS A, CHENG Y P, WATERS K E. A review of the beneficiation of rare earth element bearing minerals[J]. Minerals Engineering, 2013, 41: 97-114. doi: 10.1016/j.mineng.2012.10.017

    CrossRef Google Scholar

    [4] 郑强. 综合回收白云鄂博弱磁尾矿中铁, 稀土, 氟和磷的研究[D]. 沈阳: 东北大学, 2017.

    Google Scholar

    ZHENG Q. Studies on comprehensive recovery of iron, rare earth, fluorine and phosphorus from Bayan Obo weakly magnetic tailings[D]. Shenyang: Northeastern University, 2017.

    Google Scholar

    [5] 程建忠, 侯运炳, 车丽萍. 白云鄂博矿床稀土资源的合理开发及综合利用[J]. 稀土, 2007, 28(1): 70-74. doi: 10.3969/j.issn.1004-0277.2007.01.019

    CrossRef Google Scholar

    CHENG J Z, HOU Y B, CHE L P. Making rational multipurpose use of resources of RE in Bayan Obo deposit[J]. Chinese Rare Earths, 2007, 28(1): 70-74. doi: 10.3969/j.issn.1004-0277.2007.01.019

    CrossRef Google Scholar

    [6] 王维维, 李二斗, 王其伟, 等. 白云鄂博微细粒稀土矿工艺矿物学及浮选实验研究[J]. 矿产综合利用, 2021(5): 81-85. doi: 10.3969/j.issn.1000-6532.2021.05.012

    CrossRef Google Scholar

    WANG W W, LI E D, WANG Q W, et al. Study on process mineralogy and flotation test of the Bayan Obo fine grained rare earth ore[J]. Multipurpose Utilization of Mineral Resources, 2021(5): 81-85. doi: 10.3969/j.issn.1000-6532.2021.05.012

    CrossRef Google Scholar

    [7] ESPIRITU E, DA S G, AZIZI D, et al. Flotation behavior and electronic simulations of rare earth minerals in the presence of dolomite supernatant using sodium oleate collector[J]. Journal of Rare Earths, 2019, 37(1): 101-112. doi: 10.1016/j.jre.2018.04.016

    CrossRef Google Scholar

    [8] 肖赫, 李梅, 李光柱, 等. 白云鄂博萤石矿脉带颗粒赋存研究[J]. 中国稀土学报, 2021, 39(2): 310-316.

    Google Scholar

    XIAO H, LI M, LI G Z, et al. Occurrence of particles in Bayan Obo fluorite vein belt[J]. Journal of Chinese Rare Earths, 2021, 39(2): 310-316.

    Google Scholar

    [9] 车丽萍, 余永富. 我国稀土矿选矿生产现状及选矿技术发展[J]. 稀土, 2006, 27(1): 95-102.

    Google Scholar

    CHE L P, YU Y F. Development progress and research connotation of green chemistry of extraction process of rare earth from weathering crust elution-deposited rare[J]. Chinese Rare Earths, 2006, 27(1): 95-102.

    Google Scholar

    [10] ZHANG W, HONAKER R Q. Flotation of monazite in the presence of calcite part Ⅱ: enhanced separation performance using sodium silicate and EDTA[J]. Minerals Engineering, 2018.

    Google Scholar

    [11] ZHANG C, GAO Z, HU Y, et al. The effect of polyacrylic acid on the surface properties of calcite and fluorite aiming at their selective flotation[J]. Physicochemical Problems of Mineral Processing, 2018, 54(3): 868-877.

    Google Scholar

    [12] LI H, LIU M, LIU Q. The effect of non-polar oil on fine hematite flocculation and flotation using sodium oleate or hydroxamic acids as a collector[J]. Minerals Engineering, 2018, 119: 105-115.

    Google Scholar

    [13] LIU A, FAN M Q, FAN P P. Interaction mechanism of miscible DDA-Kerosene and fine quartz and its effect on the reverse flotation of magnetic separation concentrate[J]. Minerals Engineering, 2014, 65: 41-50.

    Google Scholar

    [14] SIS H, CHANDER S. Improving froth characteristics and flotation recovery of phosphate ores with nonionic surfactants[J]. Minerals Engineering, 2003, 16(7): 587-595.

    Google Scholar

    [15] CAO Z, CHENG Z, WANG J, et al. Synergistic depression mechanism of Ca2+ ions and sodium silicate on bastnaesite flotation[J]. Journal of Rare Earths, 2022, 40(6): 988-995.

    Google Scholar

    [16] 王介良, 曹钊, 李解, 等. 包钢稀土选矿厂稀土浮选药剂优化[J]. 金属矿山, 2013(11): 74-80.

    Google Scholar

    WANG J L, CAO Z, LI J, et al. Optimization of floatation reagents for rare earth ore in dressing plant of Bayan Obo rare earth ore[J]. Metal Mine, 2013(11): 74-80.

    Google Scholar

    [17] CAO Z, CAO Y, QU Q, et al. Separation of bastnsite from fluorite using ethylenediaminetetraacetic acid as depressant[J]. Minerals Engineering, 2019, 134: 134-141.

    Google Scholar

    [18] 王介良, 迈倩琳, 程泽宇, 等. 水玻璃和EDTA对氟碳铈矿与萤石浮选分离作用对比试验研究[J]. 有色金属(选矿部分), 2021(6): 181-188.

    Google Scholar

    WANG J L, MAI Q L, CHENG Z Y, et al. Experimental study on the effect of water glass and EDTA on the flotation separation of bastnaesite and fluorite[J]. Nonferrous Metals (Mineral Processing Section), 2021(6): 181-188.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(1)

Article Metrics

Article views(2004) PDF downloads(117) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint