Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 Vol. 42, No. 2
Article Contents

REN Yingdong, XIAO Qingfei, SHI Guiming, XIE Haosong, ZHANG Zhipeng. Optimization and Discrete Element Simulation Analysis of Primary Stage of Ball Mill in Baixiangshan Iron Processing Plant, Anhui, China[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 131-138. doi: 10.13779/j.cnki.issn1001-0076.2022.02.018
Citation: REN Yingdong, XIAO Qingfei, SHI Guiming, XIE Haosong, ZHANG Zhipeng. Optimization and Discrete Element Simulation Analysis of Primary Stage of Ball Mill in Baixiangshan Iron Processing Plant, Anhui, China[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 131-138. doi: 10.13779/j.cnki.issn1001-0076.2022.02.018

Optimization and Discrete Element Simulation Analysis of Primary Stage of Ball Mill in Baixiangshan Iron Processing Plant, Anhui, China

More Information
  • A pilot study was conducted to optimize the ball milling index of primary stage of the iron processing plant in Baixiangshan, Anhui Province, by measuring the mechanical properties of the ore, screening before ball mill feed. The recommended solution was initially determined as m(Φ60) : m(Φ50) : m(Φ40) : m(Φ30)=20 : 30 : 15 : 35 according to the semi-theoretical formula of segmental ball diameter, and set the big and small solutions as a comparison, and through the grinding comparison test, it was found that the yield of +0.15 mm level decreases by 11.24%, the yield of -0.15+0.10 mm and -0.074+0.019 mm level increases by 6.55% and 9.88% respectively, and the technical efficiency of grinding increases by 7.57%. The discrete element simulation results show that the normal collision energy of the recommended solution is only 4.15% lower than that of the field solution. The normal collision energy of the recommended solution is only 4.15% lower than that of the on-site solution, and the tangential collision energy is 69.04% higher than that of the on-site solution. The recommended solution is better than the on-site solution in a comprehensive comparison.

  • 加载中
  • [1] 吕晓艳. 铁矿选矿技术和工艺方法探讨[J]. 中国金属通报, 2018(7): 216-218. doi: 10.3969/j.issn.1672-1667.2018.07.131

    CrossRef Google Scholar

    LYN X Y. Exploration of iron ore beneficiation technology and process methods[J]. China Metal Bulletin, 2018(7): 216-218. doi: 10.3969/j.issn.1672-1667.2018.07.131

    CrossRef Google Scholar

    [2] 张亚明, 王雪峰, 李文超. 铁矿资源综合利用效益评价体系研究[J]. 中国国土资源经济, 2019, 32(4): 43-48.

    Google Scholar

    ZHANG Y M, WANG X F, LI W C. Research on the evaluation system of the benefit of comprehensive utilization of iron ore resources[J]. China Land and Resources Economy, 2019, 32(4): 43-48.

    Google Scholar

    [3] 赵立群, 王春女, 张敏, 等. 中国铁矿资源勘查开发现状及供需形势分析[J]. 地质与勘探, 2020, 56(3): 635-643.

    Google Scholar

    ZHAO L Q, WANG C N, ZHANG M, et al. Analysis of the current situation of iron ore resources exploration and development and supply and demand situation in China[J]. Geology and Exploration, 2020, 56(3): 635-643.

    Google Scholar

    [4] 姜雪薇. 中国铁矿行业发展现状及前景分析[J]. 中国金属通报, 2017(7): 161-160.

    Google Scholar

    JIANG X W. Analysis of the development status and prospect of China's iron ore industry[J]. China Metal Bulletin, 2017(7): 161-160.

    Google Scholar

    [5] 杨松荣, 蒋仲亚. 碎磨工艺及应用[M]. 北京: 冶金工业出版社, 2013.

    Google Scholar

    YANG S R, JIANG Z Y. Crushing and grinding processes and applications[M]. Beijing: Metallurgical Industry Press, 2013.

    Google Scholar

    [6] 毛勇, 王泽红, 田鹏程, 等. 磨矿对矿物浮选行为的影响及助磨剂的作用[J]. 矿产保护与利用, 2020, 40(6): 162-168.

    Google Scholar

    MAO Y, WANG Z H, TIAN P C, et al. Effect of grinding on mineral flotation behavior and the role of grinding aids[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 162-168.

    Google Scholar

    [7] 黄子杰, 孙伟, 高志勇. 磨矿对矿物表面性质和浮选行为的影响[J]. 中国有色金属学报, 2019, 29(11): 2671-2680.

    Google Scholar

    HUANG Z J, SUN W, GAO Z Y. Effect of grinding on surface properties and flotation behavior of minerals[J]. Chinese Journal of Nonferrous Metals, 2019, 29(11): 2671-2680.

    Google Scholar

    [8] 聂梦宇, 韩跃新, 李艳军. 磨矿介质对闪锌矿浮选行为的影响研究[J]. 金属矿山, 2019(2): 163-167.

    Google Scholar

    NIE M N, HAN Y X, LI Y J. Study on the influence of grinding media on the flotation behavior of sphalerite[J]. Metal Mine, 2019(2): 163-167.

    Google Scholar

    [9] 刘志伟. 磨机磨矿效率影响因素分析[J]. 有色金属(选矿部分), 2018(4): 66-69.

    Google Scholar

    LIU Z W. Analysis of factors affecting grinding efficiency of mill[J]. Nonferrous Metals (Mineral Processing Part), 2018(4): 66-69.

    Google Scholar

    [10] 陈勇, 宋永胜, 温建康, 等. 磨矿介质运动状态对锡石多金属硫化物选择性磨矿的影响[J]. 中国矿业, 2021, 30(12): 128-133.

    Google Scholar

    CHEN Y, SONG Y S, WEN J K, et al. Effect of grinding media motion state on selective grinding of cassiterite polymetallic sulfides[J]. China Mining, 2021, 30(12): 128-133.

    Google Scholar

    [11] 刘凤春, 崔振坤, 丁明星. 磨矿介质对磨矿细度的影响[J]. 山东理工大学学报(自然科学版), 2021, 35(6): 63-66.

    Google Scholar

    LIU F C, CUI Z K, DING M X. Effect of grinding media on grinding fineness[J]. Journal of Shandong University of Technology (Natural Science Edition), 2021, 35(6): 63-66.

    Google Scholar

    [12] 王德金, 刘少君, 杨健. 磨矿作业在实际生产中影响磨矿效率的因素分析[J]. 世界有色金属, 2020(13): 211-212.

    Google Scholar

    WANG D J, LIU S J, YANG J. Analysis of factors affecting grinding efficiency of grinding operations in actual production[J]. World Nonferrous Metals, 2020(13): 211-212.

    Google Scholar

    [13] 蔡爽, 蔡威, 滕桂平, 等. 矿浆浓度及粒度组成对某锌浸出渣分离粒度及磨矿参数的影响[J]. 矿产综合利用, 2018(4): 46-49+36.

    Google Scholar

    CAI S, CAI W, TENG G P, et al. Influence of slurry concentration and particle size composition on the separation particle size and grinding parameters of a zinc leaching slag[J]. Mineral Comprehensive Utilization, 2018(4): 46-49+36.

    Google Scholar

    [14] 王继生, 卢建坤, 马伟, 等. 衬板形状对大型球磨机磨矿效率的影响[J]. 矿山机械, 2013, 41(8): 68-72.

    Google Scholar

    WANG J S, LV J K, MA W, et al. Effect of liner shape on grinding efficiency of large ball mill[J]. Mining Machinery, 2013, 41(8): 68-72.

    Google Scholar

    [15] 李国宗. 球磨机筒体衬板形状对磨矿生产率影响的探讨[J]. 铜业工程, 2001(4): 65-66.

    Google Scholar

    LI G Z. Exploration of the influence of ball mill cylinder liner shape on grinding productivity[J]. Copper Engineering, 2001(4): 65-66.

    Google Scholar

    [16] 张祖刚, 毕兵兵, 周润, 等. 球磨机精确化装补球应用实践[J]. 现代矿业, 2017, 33(12): 149-151.

    Google Scholar

    ZHANG Z G, BI B B, ZHOU R, et al. Application practice of precise ball loading and replenishment in ball mill[J]. Modern Mining, 2017, 33(12): 149-151.

    Google Scholar

    [17] 汪太平, 肖庆飞, 李博, 等. 精确化装补球制度在冬瓜山铜矿的应用研究[J]. 昆明理工大学学报(自然科学版), 2015, 40(4): 23-27.

    Google Scholar

    WANG T P, XIAO Q F, LI B, et al. Study on the application of precise loading and replenishment ball system in Dongguashan copper mine[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2015, 40(4): 23-27.

    Google Scholar

    [18] 康怀斌, 肖庆飞, 秦洪训, 等. 精确化装补球方法在大尹格庄金矿中的应用研究[J]. 黄金, 2015, 36(6): 53-56.

    Google Scholar

    KANG H B, XIAO Q F, QIN H X, et al. Study on the application of precise loading and replenishment ball method in Dayingzhuang gold mine[J]. Gold, 2015, 36(6): 53-56.

    Google Scholar

    [19] 罗春梅, 郭永杰, 段希祥. 精确化装补球方法对选矿指标影响的研究[J]. 矿冶, 2008, 17(4): 19-23.

    Google Scholar

    LUO C M, GUO Y J, DUAN X X. Study on the effect of precise ball loading and replenishment method on the beneficiation index[J]. Mineralogy, 2008, 17(4): 19-23.

    Google Scholar

    [20] 段希祥. 碎矿与磨矿[M]. 北京: 冶金工业出版社, 2012: 210-213.

    Google Scholar

    DUAN X X. Ore crushing and grinding[M]. Beijing: Metallurgical Industry Press, 2012: 210-213.

    Google Scholar

    [21] OWEN P, CLEARY P W. The relationship between charge shape characteristics and fill level and lifter height for a SAG mill[J]. Minerals Engineering, 2015, 83: 19-32

    Google Scholar

    [22] 路和, 戴丽莉, 姚荣斌, 等. 球磨机研磨介质冲击特性和碰撞能量分布特性研究[J]. 有色金属(选矿部分), 2018(6): 77-81.

    Google Scholar

    LU H, DAI L L, YAO R B, et al. Research on impact characteristics and collision energy distribution characteristics of ball mill grinding media[J]. Nonferrous metals (mineral processing part), 2018(6): 77-81.

    Google Scholar

    [23] 李腾飞, 林蜀勇, 张博, 等. 不同转速率下球磨机内钢球的碰撞研究[J]. 中南大学学报(自然科学版), 2019, 50(2): 251-256.

    Google Scholar

    LI T F, LIN S Y, ZHANG B, et al. Study on the collision of steel balls in ball mills at different rotation rates[J]. Journal of Central South University (Natural Science Edition), 2019, 50(2): 251-256.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(6)

Article Metrics

Article views(1654) PDF downloads(108) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint