Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 Vol. 42, No. 2
Article Contents

ZHONG Zaiding, WU Guiye, CHEN Lijuan, YAO Hui, WANG Hui, WANG Yiqing. Study on Photodegradation of Organic Depressants in Wastewater from Molybdenum-lead Separation and Wastewater Recycle[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 126-130. doi: 10.13779/j.cnki.issn1001-0076.2022.02.017
Citation: ZHONG Zaiding, WU Guiye, CHEN Lijuan, YAO Hui, WANG Hui, WANG Yiqing. Study on Photodegradation of Organic Depressants in Wastewater from Molybdenum-lead Separation and Wastewater Recycle[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 126-130. doi: 10.13779/j.cnki.issn1001-0076.2022.02.017

Study on Photodegradation of Organic Depressants in Wastewater from Molybdenum-lead Separation and Wastewater Recycle

More Information
  • The undecomposed residue of molybdenum-lead separation inhibitors remain in wastewater stream makes it difficult to be recycled. To tackle this issue, photodegradable inhibitor LM was used for molybdenum-lead separation, and the degradation kinetics of inhibitor in molybdenum-lead separation wastewater was also studied. The degradation method was photodegradation, and the effects of different light sources such as sunlight irradiation and ultraviolet light irradiation on the degradation rate were studied respectively. The results show that both sunlight and ultraviolet light sources can accelerate the decomposition process of LM, and the final degradation rate can reach more than 99.9%. The effect of different pH values on the degradation of LM in molybdenum-lead separation wastewater stream was further studied, which indicates that, the degradation rate was accelerated in an acidic environment. The verification flotation tests were conducted, the results of which suggest the molybdenum-lead separation wastewater after photodegradation can be directly reused. It is beneficial to clean production, energy saving and emission reduction.

  • 加载中
  • [1] 林春元. 钼矿选矿与深加工[M]. 北京: 北京冶金出版社, 1997: 1-65.

    Google Scholar

    LIN C Y. Beneficiation of molybdenum and its intensive processing[M]. Beijing Metallurgical Press, 1997: 1-65.

    Google Scholar

    [2] 张文钲, 徐秋生. 提高钼精矿质量的探讨[J]. 矿业快报, 2006(12): 1-4.

    Google Scholar

    ZHANG W Z, XU Q S. Discussion on increasing quality of molybdenum concentrate[J]. Express information of mining industry, 2006(12): 1-4.

    Google Scholar

    [3] 王漪靖. 钼精矿铅高原因分析及对策[J]. 中国钼业, 2002, 26(6): 11-14. doi: 10.3969/j.issn.1006-2602.2002.06.002

    CrossRef Google Scholar

    WANG Y J. Cause analysis and countermeasures of high-lead in molybdenum concentrate[J]. China Molydenum Industry, 2002, 26(6): 11-14. doi: 10.3969/j.issn.1006-2602.2002.06.002

    CrossRef Google Scholar

    [4] TANRIVERDI M, OZTURK E. Use of sodium metabisulphide as an alternative depressant in selective notation of lead and copper[J]. Asian Journal of Chemistry, 2012, 24(8): 3579-3581.

    Google Scholar

    [5] PIAO Z J, WEI D Z, LIU Z L, et al. Selective depression of galena and chalcopyrite by O, O-bis(2, 3-dihydroxypropyl) dithiophosphate[J]. Trans. Nonferrous Met. Soc. China, 2013(23): 3063-3067.

    Google Scholar

    [6] PIAO Z J, WEI D Z, LIU Z L. Influence of sodium 2, 3-dihydroxypropyl dithiocarbonate on floatability of chalcopyrite and galena[J]. Trans. Nonferrous Met. Soc. China, 2014(24): 3343-3347.

    Google Scholar

    [7] 王德海. 某复杂钼铅多金属矿浮选试验研究[J]. 甘肃冶金, 2017, 39(1): 1-4+14. doi: 10.3969/j.issn.1672-4461.2017.01.001

    CrossRef Google Scholar

    WANG D H. Research on flotation of a complex molybdenum-lead polymetallic ore[J]. Gangsu Metallurgy, 2017, 39(1): 1-4+14. doi: 10.3969/j.issn.1672-4461.2017.01.001

    CrossRef Google Scholar

    [8] 温晓婵, 殷志刚, 刘建东. 新型组合抑制剂在钼铅浮选分离中的应用[J]. 中国钼业, 2016, 40(2): 26-31.

    Google Scholar

    WEN X C, YIN Z G, LIU J D. The application of new type of depressant on separation of molybdenite from galena[J]. China Molybdenum Industry, 2016, 40(2): 26-31.

    Google Scholar

    [9] 陈代雄. 新型组合抑制剂对微细粒方铅矿抑制机理研究[J]. 金属矿山, 2020(2): 105-111.

    Google Scholar

    CHEN D X. Study on the inhibition mechanism of new combination inhibitors on fine galena[J]. Metal Mine, 2020(2): 105-111.

    Google Scholar

    [10] 程新朝, 孙志健. 中国钼精矿降铅研究进展[J]. 矿冶, 2017, 26(5): 1-4+10.

    Google Scholar

    CHENG X C, SUN Z J. The research development on reducing lead from molybdenite concentrate in China[J]. Mining & Metallurgy, 2017, 26(5): 1-4+10.

    Google Scholar

    [11] 北京市环境保护科学研究院. 污水综合排放标准: GB 8978—1996[S]. 北京: 国家环境保护局, 1996.

    Google Scholar

    Beijing Research Institute of Environmental Protection State. Integrated wastewater discharge Standard: GB 8978—1996[S]. Beijing: Department of Environmental Conservation, 1996.

    Google Scholar

    [12] 胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21(3): 1-15.

    Google Scholar

    HU A G. China's goal of achieving carbon peak by 2030 and its main approaches[J]. Journal of Beijing University of Technology (Social science edition), 2021, 21(3): 1-15.

    Google Scholar

    [13] 朱小米, 石文艳. 光降解-超声波耦合处理磺胺类药物废水的研究[J]. 化工时刊, 2018, 32(5): 24-26.

    Google Scholar

    ZHU X M, SHI W Y. Study on photodegration-ultrasonic coupling treatment of the wastewater sulfadiazine[J]. Chemical Industry Times, 2018, 32(5): 24-26.

    Google Scholar

    [14] 马佳麟, 王恩革, 张雪洁, 等. 光催化氧化在难降解废水处理中的应用进展[J]. 山东化工, 2021, 50: 266-268+271.

    Google Scholar

    MA J L, WANG E G, ZHANG X J and etc. Application of photocatalytic oxidation in refractory wastewater treatment[J]. Shandong Chemical Industry, 2021, 50: 266-268+271.

    Google Scholar

    [15] ALI S. ALKORBI, HAFIZ MUHAMMAD ASIF JAVED, SHAHID HUSSAIN, et al. Solar light-driven photocatalytic degradation of methyl blue by carbon-doped TiO2 nanoparticles[J]. Optical Materials, 2022, 127: 1-5.

    Google Scholar

    [16] 王明晖, 聂晶, 李静. 光催化技术在水处理中的研究进展[J]. 能源与环境, 2012(2): 51-52+57. doi: 10.3969/j.issn.1672-9064.2012.02.024

    CrossRef Google Scholar

    WANG M H, NIE J, LI J. Research progress of photocatalytic technologies in area of wastewater treatment[J]. Energy and Environment, 2012(2): 51-52+57. doi: 10.3969/j.issn.1672-9064.2012.02.024

    CrossRef Google Scholar

    [17] 梅光军, 李佩悦, 雷绍民. 水杨羟肟酸捕收剂光催化降解研究[J]. 金属矿山, 2010(7): 157-160+187.

    Google Scholar

    MEI G J, LI P Y, LEI S M. Study on photocatalytic degradation of flotation collector of salicylic hydroxamic acid[J]. Metal Mine, 2010(7): 157-160+187.

    Google Scholar

    [18] 鄢恒珍, 龚文琪, 梅光军, 等. 共代谢条件下丁基黄药的生物降解试验研究[J]. 环境污染与防治, 2010, 32(4): 1-5. doi: 10.3969/j.issn.1001-3865.2010.04.001

    CrossRef Google Scholar

    YAN H Z, GONG W Q, MEI G J, et al. Study on co-metabolism biodegradation of butyl xanthate[J]. Environmental pollution and Prevention, 2010, 32(4): 1-5. doi: 10.3969/j.issn.1001-3865.2010.04.001

    CrossRef Google Scholar

    [19] XU M Y, ZENG G Q, CAI X W, et al. Screening of high efficient paracetamolum degrading bacterial strains and the effect of their biorugmentative use[J]. Acta Sci Circumst, 2003, 23(5): 391-395.

    Google Scholar

    [20] 丁惠平. 微生物法处理苯胺工业废水[J]. 广东化工, 2005(12): 20-22. doi: 10.3969/j.issn.1007-1865.2005.12.006

    CrossRef Google Scholar

    DING H P. Microorganism treatment industrial aniline sewage[J]. Guangdong Chemical, 2005(12): 20-22. doi: 10.3969/j.issn.1007-1865.2005.12.006

    CrossRef Google Scholar

    [21] 袁芳. 多效唑在水体中光化学降解的研究[D]. 长沙: 湖南农业大学, 2007.

    Google Scholar

    YUAN F. Research on photochemical degradation of paclobutrazol in aqueous solution[D]. Changsha: Hunan Agricultral University, 2007.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(1240) PDF downloads(69) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint