Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 Vol. 42, No. 1
Article Contents

LIU Weihai, LI Shuming, WU Zemin, YANG Bo, ZHANG Dezhong, CHEN Huanle, XIA Chenkang, SHANG Yang, HU Bo, ZHANG Xinyuan, MIAO Yang, GAO Feng. Preparation of SiO2 Aerogel from Coal Gangue by One-step Acid-base Catalytic Method[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 165-171. doi: 10.13779/j.cnki.issn1001-0076.2022.01.024
Citation: LIU Weihai, LI Shuming, WU Zemin, YANG Bo, ZHANG Dezhong, CHEN Huanle, XIA Chenkang, SHANG Yang, HU Bo, ZHANG Xinyuan, MIAO Yang, GAO Feng. Preparation of SiO2 Aerogel from Coal Gangue by One-step Acid-base Catalytic Method[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 165-171. doi: 10.13779/j.cnki.issn1001-0076.2022.01.024

Preparation of SiO2 Aerogel from Coal Gangue by One-step Acid-base Catalytic Method

More Information
  • Using coal gangue from Shuozhou, Shanxi as a single silicon source, superhydrophobic silica aerogel materials were prepared by acid-base one-step catalytic method. The effects of hydrochloric acid concentration and acid leaching temperature on alumina leaching, sodium hydroxide concentration and alkali leaching temperature on silica leaching, and the effects of hydrochloric acid concentration on aerogel under acid-base one-step catalysis were investigated by single factor leaching test. The results showed that: when hydrochloric acid concentration in acid leaching process was 3 mol/L, acid leaching temperature was 100 ℃, sodium hydroxide concentration was 3 mol/L, alkali leaching temperature was 80 ℃, and hydrochloric acid concentration in acid-base one-step catalytic process was 2 mol/L, the leaching rate of alumina and silica was 81.26% and 86.53%, respectively. The bulk density, specific surface area and hydrophobic angle of aerogels could be 0.04 g/cm3, 610.68 m2/g and 144.8°, respectively. This technology could provide an effective way for comprehensive utilization of coal gangue.

  • 加载中
  • [1] 杨倩, 滕藤, 刘彤, 等. 常压干燥条件下乙醇对SiO2气凝胶密度的影响[J]. 化学研究, 2021(5): 430-437.

    Google Scholar

    YANG Q, TENG T, LIU T, et al. Effect of ethanol on density of silica aerogels by ambient pressure drying method[J]. Chemical Research, 2021(5): 430-437.

    Google Scholar

    [2] 黎白钰, 李响. 气凝胶的制备与应用[J]. 广东化工, 2018(7): 135-138. doi: 10.3969/j.issn.1007-1865.2018.07.059

    CrossRef Google Scholar

    LI B Y, LI X. Preparation and application of aerogels[J]. Guangdong Chemical Industry, 2018(7): 135-138. doi: 10.3969/j.issn.1007-1865.2018.07.059

    CrossRef Google Scholar

    [3] 万晶, 徐丽慧, 潘虹, 等. 基于SiO2-TiO2复合气凝胶制备超疏水光催化自清洁棉织物[J]. 印染, 2021(6): 19-24.

    Google Scholar

    WAN J, XU L H, PAN H, et al. Preparation of superhydrophobic photocatalytic self-cleaning cotton fabric based on SiO2-TiO2 composite aerogels[J]. China Dyeing & Finishing 2021(6): 19-24.

    Google Scholar

    [4] 代坤义, 陈志涛, 季金苟, 等. SiO2气凝胶透明隔热涂层的制备及性能表征[J]. 涂料工业, 2015(11): 35-39. doi: 10.3969/j.issn.0253-4312.2015.11.008

    CrossRef Google Scholar

    DAI K Y, CHEN Z T, JI J G, et al. Preparation and characterization of SiO2 aerogel transparent thermal insulation coating[J]. Paint & Coatings Industry, 2015(11): 35-39. doi: 10.3969/j.issn.0253-4312.2015.11.008

    CrossRef Google Scholar

    [5] 孙骐, 吴广明, 周斌, 等. 疏水型SiO2气凝胶薄膜的制备[J]. 功能材料, 2002(4): 430-431. doi: 10.3321/j.issn:1001-9731.2002.04.031

    CrossRef Google Scholar

    SUN Q, WU G M, ZHOU B, et al. Preparation of hydrophobic silica aerogel films on glass[J]. Journal of Functional Materials, 2002(4): 430-431. doi: 10.3321/j.issn:1001-9731.2002.04.031

    CrossRef Google Scholar

    [6] 李伟胜, 赵苏, 吕毅涵. 二氧化硅气凝胶在反射隔热涂料中的应用[J]. 电镀与涂饰, 2020(6): 316-322.

    Google Scholar

    LI W S, ZHAO S, LV Y H. Application of silica aerogel in reflective thermal insulation paint[J]. Electroplating & Finishing, 2020(6): 316-322.

    Google Scholar

    [7] 李华. 二氧化硅气凝胶载药性能的研究[J]. 河南大学学报(医学版), 2017(3): 182-186.

    Google Scholar

    LI H. Kano-drug loaded by supercritical rapid expansion[J]. Journal of Henan University(Medical Science), 2017(3): 182-186.

    Google Scholar

    [8] 马利国, 孙艳荣, 李东来, 等. 二氧化硅气凝胶硅源选择的研究进展[J]. 无机盐工业, 2020(8): 11-16.

    Google Scholar

    MA L G, SUN Y R, LI D L, et al. Research progress on silicon source selection of silica aerogel[J]. Inorganic Chemicals Industry, 2020(8): 11-16.

    Google Scholar

    [9] 黄健, 房猛, 张爱满, 等. 疏水性SiO2气凝胶常压干燥制备与表征[J]. 硅酸盐通报, 2018(1): 96-102.

    Google Scholar

    HUANG J, FANG M, ZHANG AM, et al. Preparation and characterization of hydrophobic SiO2 aerogel via ambient pressure drying[J]. Bulletin of the Chinese Ceramic Society, 2018(1): 96-102.

    Google Scholar

    [10] 李万景, 汪勇, 李建彬. 常压干燥制备二氧化硅气凝胶的工艺研究[J]. 佛山陶瓷, 2019(9): 17-18. doi: 10.3969/j.issn.1006-8236.2019.09.007

    CrossRef Google Scholar

    LI W J, WANG Y, LI J B. Preparation of silica dioxide aerogel by atmospheric drying[J]. Foshan Ceramics, 2019(9): 17-18. doi: 10.3969/j.issn.1006-8236.2019.09.007

    CrossRef Google Scholar

    [11] 王晓栋, 张玥, 陈松, 等. 煤矸石资源化利用的研究进展[J]. 化学工程师, 2021(4): 68-69.

    Google Scholar

    WANG X D, ZHANG Y, CHEN S, et al. Current situation research on resource utilization of coal gangue[J]. Chemical Engineer, 2021(4): 68-69.

    Google Scholar

    [12] 邓代强. 中国西南地区煤矸石利用现状与展望[J]. 矿产保护与利用, 2019(2): 136-141.

    Google Scholar

    DENG D Q. The present situation and prospect of coal gangue utilization in southwest China[J]. Conservation and Utilization of Mineral Resources, 2019(2): 136-141.

    Google Scholar

    [13] 贾敏. 煤矸石综合利用研究进展[J]. 矿产保护与利用, 2019(4): 46-52.

    Google Scholar

    JIA M. The current situation research on comprehensive utilization of coal gangue[J]. Conservation and Utilization of Mineral Resources, 2019(4): 46-52.

    Google Scholar

    [14] ZHU J M, HUI W C, NAN N D. Study of synthesis of SiO2 aerogel from coal gangue at an ambient pressure[J]. Advanced Materials Research, 2014, 997(0): 614-617.

    Google Scholar

    [15] ZHU P H, ZHENG M, ZHAO S Y, et al. Synthesis and thermal insulation performance of silica aerogel from recycled coal gangue by means of ambient pressure drying[J]. Journal of Wuhan University of Technology(Materials Science Edition), 2015, 30(5): 908-913. doi: 10.1007/s11595-015-1248-9

    CrossRef Google Scholar

    [16] 魏存弟, 马鸿文, 杨殿范, 等. 煅烧煤系高岭石的相转变[J]. 硅酸盐学报, 2005(1): 77-81.

    Google Scholar

    WEI C D, MA H W, YANG D F, et al. Phase transformation for calcined coal measures kaolinite[J]. Journal of the Chinese Ceramic Society, 2005(1): 77-81.

    Google Scholar

    [17] 刘玉林, 刘长淼, 刘岩, 等. 我国朔州地区煤矸石的矿物学特征及煅烧组分变化研究[J]. 矿产保护与利用, 2020(3): 100-105.

    Google Scholar

    LIU Y L, LIU C M, LIU Y, et al. Mineralogical characteristics and calcination composition changes of coal gangue in Shuozhou area of China[J]. Conservation and Utilization of Mineral Resources, 2020(3): 100-105.

    Google Scholar

    [18] 刘博, 刘墨祥, 陈晓平. 用废弃煤矸石制备高比表面积的SiO2-Al2O3二元复合气凝胶[J]. 化工学报, 2017(5): 2096-2104.

    Google Scholar

    LIU B, LIU M X, CHEN X P. Preparation of SiO2-Al2O3 composite aerogel with high specific surface area by sol-gel method from coal gangue[J]. CIESC Jorunal, 2017(5): 2096-2104.

    Google Scholar

    [19] 李华鑫, 陈俊勇, 乐弦, 等. Al2O3-SiO2复合气凝胶的制备与表征[J]. 材料导报, 2019(18): 3170-3174.

    Google Scholar

    LI H X, CHEN J Y, LE X, et al. Preparation and characterization of Al2O3-SiO2 composite aerogels[J]. Materials Review, 2019(18): 3170-3174.

    Google Scholar

    [20] 耿刚强, 康爽, 王宏震, 等. 以工业水玻璃为硅源常压干燥制备SiO2气凝胶[J]. 机械工程材料, 2013(4): 35-37.

    Google Scholar

    GENG G Q, KANG S, WANG H Z, et al. Preparation of silica aerogel using industrial sodium silicate as silicon source by ambient pressure drying method[J]. Materials for Mechanical Engineering, 2013(4): 35-37.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(1)

Article Metrics

Article views(1679) PDF downloads(104) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint