Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 Vol. 42, No. 1
Article Contents

LUO Hengtong, FENG Dongxia, YANG Duo, ZHANG Xiaoyong, XIONG Yunong. Coarse Particle Flotation Technology and Its Application[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 129-137. doi: 10.13779/j.cnki.issn1001-0076.2022.01.019
Citation: LUO Hengtong, FENG Dongxia, YANG Duo, ZHANG Xiaoyong, XIONG Yunong. Coarse Particle Flotation Technology and Its Application[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 129-137. doi: 10.13779/j.cnki.issn1001-0076.2022.01.019

Coarse Particle Flotation Technology and Its Application

More Information
  • Corresponding author: FENG Dongxia  
  • Coarse particle flotation technology increases the upper limit of the floatable particle size of mineral particles, and can reduce energy consumption, which is of great significance for pre-separation tailings, coarse tailings re-separation, especially for the flotation of minerals that are easy to be crushed. In recent years, many coarse-grained flotation technologies have appeared, and most of them are used in the separation of minerals such as coal and phosphate minerals. Based on the analysis of the properties of coarse-grained minerals and their difficulties in flotation, this paper proposes to improve coarse-grained flotation. This paper summarizes the relevant flotation methods such as froth flotation method, flash flotation method, fluidized bed flotation method and related equipment, and introduces the advantages and disadvantages of different methods in practical production.

  • 加载中
  • [1] JAMESON G J. New directions in flotation machine design[J]. Minerals Engineering, 2010, 23: 835-841. doi: 10.1016/j.mineng.2010.04.001

    CrossRef Google Scholar

    [2] DANIEL M, LEWIS-GRAY E. Comminution efficiency attracts attention[J]. The AusIMM Bulletin, 2011(10): 20-30.

    Google Scholar

    [3] MUSA F, MORRISON R. A more sustainable approach to assessing comminution efficiency[J]. Minerals Engineering, 2009, 22: 593-601. doi: 10.1016/j.mineng.2009.04.004

    CrossRef Google Scholar

    [4] NORGATE T, JAHANSHAHI S. Improving the sustainability of primary metal production—the need for a life cycle approach[C]. Brisbane, XXV International Mineral Processing Conference (IMPC), 2010.

    Google Scholar

    [5] MWALE AH, MUSONGE P, FRASER DM. The influence of particle size on energy consumption and water recovery in comminution and dewatering systems[J]. Minerals Engineering, 2005(18): 915-926.

    Google Scholar

    [6] 敖顺福, 朱家锐, 徐峰, 等. 预选抛尾技术应用进展[J]. 矿产保护与利用, 2021, 41(4): 157-163.

    Google Scholar

    AO S F, ZHU J R, XU F, et al. Application progress of preconcentration and discarding technology[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 157-163.

    Google Scholar

    [7] 卢寿慈. 粗粒浮选理论、工艺及设备[J]. 国外金属矿选矿, 1982(10): 47-53.

    Google Scholar

    LU S C. Theory, technology and equipment of coarse flotation[J]. Metallic Ore Dressing Abroad, 1982(10): 47-53.

    Google Scholar

    [8] SCHINA GOEL, GRAEME J JAMESON. Detachment of particles from bubbles in an agitated vessel[J]. Minerals Engineering, 2012(32/38): 324-330.

    Google Scholar

    [9] 平翠霞. 铝土矿浮选泡沫尺寸分布特征与浮选药剂添加量关系模型[D]. 长沙: 中南大学, 2012.

    Google Scholar

    PING C X. Bauxite flotation foam size distribution characteristics and flotation reagent dosage relationship model[D]. Changsha: Central South University, 2012.

    Google Scholar

    [10] 喻明军. 充气深槽浮选机性能参数试验及模拟分析[D]. 长沙: 中南大学, 2010.

    Google Scholar

    YU M J. Test and simulation analysis of performance parameters of aerated deep cell flotation machine[D]. Changsha: Central South University, 2010.

    Google Scholar

    [11] 邱冠周, 胡岳华, 王淀佐. 颗粒间相互作用与细粒浮选[M]. 长沙: 中南工业大学出版社, 1993.

    Google Scholar

    QIU G Z, HU Y H, WANG D Z. Particle-to-particle interaction and fine-grain flotation[M]. Changsha: Central South University of Technology Press, 1993.

    Google Scholar

    [12] 沈政昌. 浮选机理论与技术[M]. 北京: 冶金工业出版社, 2012.

    Google Scholar

    SHEN Z C. Flotation machine theory and technology[M]. Beijing: Metallurgical Industry Press, 2012.

    Google Scholar

    [13] SOTO H, BARBERY G. Flotation of coarse particles in a counter-current column cell[J]. Miner. Metall. Process, 1991, 8(1): 16-21.

    Google Scholar

    [14] SCHULZE HJ. Physic-chemical elementary processes in flotation: an analysis from the point of view of colloid science including process engineering considerations/Hans Joachim schulze (translated by manfred hecker)[R]. Elsevier, Amsterdam, New York: 1984.

    Google Scholar

    [15] KOHMUENCHA J N, MANKOSAB M J, THANASEKARANA H, et al. Improving coarse particle flotation using the hydrofloat(raising the trunk of the elephant curve)[J]. Minerals Engineering, 2018, 121: 137-14. doi: 10.1016/j.mineng.2018.03.004

    CrossRef Google Scholar

    [16] 李成秀. 卡房高砷锡石硫化铜矿粗粒浮选新工艺研究[D]. 昆明: 昆明理工大学, 2005.

    Google Scholar

    LI C X. Study on the new flotation process of high arsenic cassiterite sulfide copper ore in Kafang[D]. Kunming: Kunming University of Technology, 2005.

    Google Scholar

    [17] VIANNA S. The effect of particle size, collector coverage and liberation on the floatability of galena particles in an ore[D]. Queensland: University of Queensland, 2004.

    Google Scholar

    [18] 邱冠周, 伍喜庆, 王毓华, 等. 近年浮选进展[J]. 金属矿山, 2006(1): 41-52. doi: 10.3321/j.issn:1001-1250.2006.01.013

    CrossRef Google Scholar

    QIU G Z, WU X Q, WANG Y H, et al. Flotation progress in recent years[J]. Metal Mine, 2006(1): 41-52. doi: 10.3321/j.issn:1001-1250.2006.01.013

    CrossRef Google Scholar

    [19] 列皮伦JO., 刘万峰, 肖力子. 粗粒浮选的有效技术——泡沫中分选[J]. 国外金属矿选矿, 2004(9): 9-14.

    Google Scholar

    LEEPILUN J O., LIU W FE, XIAO L Z. Effective technology for coarse flotation: SIF[J]. Metallic Ore Dressing Abroad, 2004(9): 9-14.

    Google Scholar

    [20] 王泓皓. 宽粒级煤泥浮选机试验研究与流场分析[D]. 太原: 太原理工大学, 2013.

    Google Scholar

    WANG H H. Experimental research and flow field analysis of wide particle slime flotation machine[D]. Taiyuan: Taiyuan University of Technology, 2013.

    Google Scholar

    [21] 肖遥, 韩海生, 孙伟, 等. 粗颗粒浮选技术与装备研究进展与趋势[J]. 金属矿山, 2020(6): 9-23.

    Google Scholar

    XIAO Y, HAN H S, SUN W, et al. Research progress of coarse particle flotation technology and equipment[J]. Metal Mine, 2020(6): 9-23.

    Google Scholar

    [22] 李振, 刘炯天, 王永田, 等. 浮选技术的发展现状及展望[J]. 金属矿山, 2008(1): 1-6.

    Google Scholar

    LI Z, LIU J T, WANG Y T, et al. Development status and prospect of flotation technology[J]. Metal Mine, 2008(1): 1-6.

    Google Scholar

    [23] 赵泓铭, 戴惠新. 闪速浮选技术及其应用[J]. 矿产综合利用, 2016(6): 17-20. doi: 10.3969/j.issn.1000-6532.2016.06.004

    CrossRef Google Scholar

    ZHAO H M, DAI H X. Flash flotation technology and its application[J]. Comprehensive Utilization of Mineral Resources, 2016(6): 17-20. doi: 10.3969/j.issn.1000-6532.2016.06.004

    CrossRef Google Scholar

    [24] MCCULLOCHC WALTER E. JR. Flash flotation for improved gold recovery at Freeport Indonesia[J]. Mining, Metallurgy & Exploration, 1990(3): 144-148.

    Google Scholar

    [25] BIANCA NEWCOMBE, BRADSHAW D, WIGHTMAN E. Flash flotation and the plight of the coarse particle[J]. Minerals Engineering, 2012(34): 1-10.

    Google Scholar

    [26] 夏晓鸥. 闪速浮选的理论与实践[J]. 国外金属矿选矿, 1993(10): 47-57.

    Google Scholar

    XIA X O. Theory and practice of flash flotation[J]. Metallic Ore Dressing Abroad, 1993(10): 47-57.

    Google Scholar

    [27] BIANCA NEWCOMBE. A phenomenological model for an industrial flash flotation cell[J]. Minerals Engineering, 2014(64): 51-62.

    Google Scholar

    [28] 国家自然科学基金委员会. 冶金与矿业科学[M]. 北京: 科学出版社, 1997.

    Google Scholar

    National natural science foundation of China. Metallurgy and Mining Science[M]. Beijing: Science Press, 1997.

    Google Scholar

    [29] 陈典助. 闪速浮选工艺及其设备的探讨[J]. 工程设计与研究, 1993(2): 16-19.

    Google Scholar

    CHEN D Z. Discussion of flash flotation process and its equipment[J]. Engineering Design and Research, 1993(2): 16-19.

    Google Scholar

    [30] 谭明, 冯天然, 韩志彬, 等. YXⅡ-4闪速浮选机在磨矿分级回路的工业试验研究[J]. 有色金属(选矿部分), 2017(1): 74-77+85. doi: 10.3969/j.issn.1671-9492.2017.01.017

    CrossRef Google Scholar

    TAN M, FENG T R, HAN Z B, et al. Industrial test and research of YXⅡ-4 flash flotation machine in grinding and grading circuit[J]. Nonferrous Metals(Mineral Processing Section), 2017(1): 74-77+85. doi: 10.3969/j.issn.1671-9492.2017.01.017

    CrossRef Google Scholar

    [31] 夏剑雄, 梅丰. 高效闪速浮选机应用实践[J]. 中国矿业, 2000(S2): 216-219.

    Google Scholar

    XIA J X, MEI F. Efficient flash flotation machine application practice[J]. China Mining Magazine, 2000(S2): 216-219.

    Google Scholar

    [32] 陈贵民, 陈桥, 张福生, 等. 闪速浮选回收磨矿-分级回路中金矿物试验研究[J]. 中国资源综合利用, 2019, 37(9): 1-4. doi: 10.3969/j.issn.1008-9500.2019.09.001

    CrossRef Google Scholar

    CHEN G M, CHEN Q, ZHANG F S, et al. Experimental study on recovery of gold minerals in grinding grading circuit by flash flotation[J]. Comprehensive Utilization of Resources in China, 2019, 37(9): 1-4. doi: 10.3969/j.issn.1008-9500.2019.09.001

    CrossRef Google Scholar

    [33] BIANCA NEWCOMBE, WIGHTMAN E, BRADSHAW D. The role of a flash flotation circuit in an industrial refractory gold concentrator[J]. Minerals Engineering, 2013, 53: 57-73. doi: 10.1016/j.mineng.2013.06.016

    CrossRef Google Scholar

    [34] BIANCA NEWCOMBE, BRADSHAW D, WIGHTMAN E. The hydrodynamics of an operating flash flotation cell[J]. Minerals Engineering, 2013, 41: 86-96. doi: 10.1016/j.mineng.2012.11.007

    CrossRef Google Scholar

    [35] 李皊值. 闪速浮选机及其应用[J]. 湿法冶金, 1995(1): 1-4.

    Google Scholar

    LI L Z. Flash flotation machine and its applications[J]. Hydrometallurgy, 1995(1): 1-4.

    Google Scholar

    [36] 严立德. 快速浮选(摘要)[J]. 国外金属矿选矿. 1986(8): 25-29.

    Google Scholar

    YAN L D. Fast flotation (Summary)[J]. Metallic Ore Dressing Abroad, 1986(8): 25-29.

    Google Scholar

    [37] 何从行. 快速浮选[J]. 有色矿山, 1987(10): 54-57.

    Google Scholar

    HE C X. Flash flotation[J]. Nonferrous Mines, 1987(10): 54-57.

    Google Scholar

    [38] 王海瑞. 闪速浮选技术的研究与应用[J]. 甘肃有色金属, 1998(2): 1-5.

    Google Scholar

    WANG H R. Research and application of flash flotation technology[J]. Gansu non-ferrous metals, 1998(2): 1-5.

    Google Scholar

    [39] 张和仕. 闪速浮选[J]. 江西冶金, 1989, 9(4): 34-36.

    Google Scholar

    ZHANG H S. Flash flotation[J]. Jiangxi Metallurgy, 1989, 9(4): 34-36.

    Google Scholar

    [40] 李长根, 刘永强. 旋流闪速浮选法的研究——旋流闪速浮选法的可行性研究[J]. 有色金属, 2000, 52(1): 22-31.

    Google Scholar

    LI C G, LI Y Q. Study of cyclone flash flotation method--feasibility study of cyclone flash flotation method[J]. Nonferrous Metals, 2000, 52(1): 22-31.

    Google Scholar

    [41] 朱耘青. 石油炼制工艺学(下)[M]. 北京: 中国石化出版社, 1992: 80-85.

    Google Scholar

    ZHU G Q. Petroleum processing technology course volume Ⅱ[M]. Beijing: Sinopec Press, 1992: 80-85.

    Google Scholar

    [42] PUSPASARI MZM, TALIB WRW, TASIRIN DAUD SM. Drying kinetics of oil palm frond particles in an agitated fluidized bed dryer[J]. Drying Technology, 2012, 30(6): 619-630. doi: 10.1080/07373937.2012.654873

    CrossRef Google Scholar

    [43] MATT R. TOMKINS, TOM E. BALDOCK, PETER NIELSEN. Hindered settling of sand grains[J]. Sedimentology, 2005, 52: 1425-1432. doi: 10.1111/j.1365-3091.2005.00750.x

    CrossRef Google Scholar

    [44] SANGKYUN KOO. Estimation of hindered settling velocity of suspensions[J]. Journal of Industrial and Engineering Chemistry, 2009(15): 45-49.

    Google Scholar

    [45] LUTTRELL GH, WESTERFIELD TC, KOHMUENCH JN, et al. Development of high-efficiency hydraulic separators[J]. Mining, Metallurgy & Exploration, 2006, 23: 33-39.

    Google Scholar

    [46] BELLSON AWATEYA, HOMIE THANASEKARANB, JAISEN N. KOHMUENCHC, et al. Optimization of operating parameters for coarse sphalerite flotation in the hydrofloat fluidized-bed separator[J]. Minerals Engineering, 2013(50-51): 99-105.

    Google Scholar

    [47] BAIT RG, PAWAR SB, BANERJEE AN, et al. Mechanically agitated fluidized bed drying of cohesive particles at low air velocity[J]. Drying Technology, 2011, 29(7): 808-818. doi: 10.1080/07373937.2010.541574

    CrossRef Google Scholar

    [48] LYU B, DENG X W, CHANG L S, et al. Effect of agitation on hydrodynamics and separation performance of gas-solid separation fluidized bed[J]. Powder Technology, 2021, 388: 129-138. doi: 10.1016/j.powtec.2021.04.084

    CrossRef Google Scholar

    [49] GRAEME J. JAMESON, CAGRI ENER. Coarse chalcopyrite recovery in a universal froth flotation machine[J]. Minerals Engineering, 2019, 134: 118-133.

    Google Scholar

    [50] 沈政昌, 罗世瑶, 杨义红, 等. 流态化浮选技术概述[J]. 有色金属(选矿部分), 2019(5): 20-26.

    Google Scholar

    SHEN Z C, LUO S Y, YANG Y H, et al. Overview of fluidization flotation technology[J]. Nonferrous Metals(Mineral Processing Section), 2019(5): 20-26.

    Google Scholar

    [51] 王冬冬, 王怀法. 粗颗粒煤炭流化床浮选试验研究[J]. 煤炭工程, 2018, 50(5): 123-126.

    Google Scholar

    WANG D D, WANG H F. Experimental study on fluidized bed flotation of coarse coal[J]. Coal Engineering, 2018, 50(5): 123-126.

    Google Scholar

    [52] XU D, AMETOV I, GRANO SR. Quantifying rheological and fine particle attachment contributions to coarse particle recovery in flotation[J]. Minerals Engineering, 2012, 39: 89-98. doi: 10.1016/j.mineng.2012.07.003

    CrossRef Google Scholar

    [53] YOON RH, LUTTRELL GH. The effect of bubble size on fine particle flotation[J]. Mineral Processing and Extractive Metallurgy Review, 1989(5): 1-4+101-122.

    Google Scholar

    [54] ATAS, CHENZ, JAMESONG J. Improving the capture of coarse particles using bubble clusters[M]. Littleton, Colorado: Society for Mining, Metallurgy and Exploration, 2009.

    Google Scholar

    [55] 柳开芳, 叶艳, 令狐丹, 等. 超声波对粗粒高灰煤泥浮选效果的影响研究[J]. 山东化工, 2020, 49(2): 129-130. doi: 10.3969/j.issn.1008-021X.2020.02.048

    CrossRef Google Scholar

    LIU K F, YE Y, LING H D, et al. Effect of ultrasound on the flotation performance of coarse size fraction of high-ash coal particles[J]. Shandong Chemical Industry, 2020, 49(2): 129-130. doi: 10.3969/j.issn.1008-021X.2020.02.048

    CrossRef Google Scholar

    [56] SAYED AHMED, AHMED SOBHY. Cavitation nanobubble enhanced flotation process for more efficient coal recovery[D]. Kentucky: University of Kentucky, 2013.

    Google Scholar

    [57] 刘安, 韩峰, 李志红, 等. 纳米气泡在微细粒矿物浮选中的应用研究进展[J]. 矿产保护与利用, 2018(3): 81-86.

    Google Scholar

    LIU A, HAN F, LI Z H, et al. Research Progress of Nano-bubble in Micro-fine Mineral Flotation[J], Conservation and Utilization of Mineral Resources, 2018(3): 81-86.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views(3121) PDF downloads(159) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint