Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 Vol. 42, No. 1
Article Contents

LIU Chongjun, WU Guiye, Ma Yanhong, LU Tong, LIU Huinan, ZHAO Zhiqiang, ZHU Yangge, ZHONG Zaiding, AN Geng, CHEN Lijuan. Application and Quantum Chemical Analysis of Novel Sulfur-Containing Heterocyclic Inhibitors in Separation of Molybdenite and Galena[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 75-81. doi: 10.13779/j.cnki.issn1001-0076.2022.01.011
Citation: LIU Chongjun, WU Guiye, Ma Yanhong, LU Tong, LIU Huinan, ZHAO Zhiqiang, ZHU Yangge, ZHONG Zaiding, AN Geng, CHEN Lijuan. Application and Quantum Chemical Analysis of Novel Sulfur-Containing Heterocyclic Inhibitors in Separation of Molybdenite and Galena[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 75-81. doi: 10.13779/j.cnki.issn1001-0076.2022.01.011

Application and Quantum Chemical Analysis of Novel Sulfur-Containing Heterocyclic Inhibitors in Separation of Molybdenite and Galena

More Information
  • In the traditional separation of molybdenum and lead, phosphorus nox is used as an inhibitor, which has serious toxicity and pollution. In order to reduce the content of lead in molybdenum concentrate from Jinduicheng, the lead inhibition effects of mercaptopropanol, L-cysteine, 1, 3-oxythiopentane carboxylic acid and tiopronin with weak toxicity were compared, and the amount of inhibitor were investigated. After comparison, 1, 3-oxythiopentane carboxylic acid was selected as the inhibitor of molybdenum-lead-bearing concentrate in Jinduicheng. After condition test, molybdenum concentrate can be obtained with molybdenum grade of 52.20%, recovery rate of 85.01% and lead content of 0.010% through one roughings and five cleanings when the regrinding fineness of -38 μm was 80%. The effect of 1, 3-oxythiopentane carboxylic acid is equivalent to that of phosphorus Knox. The characteristics of frontier orbits of galena and molybdenite were calculated by means of coordination chemistry and density functional theory, and the characteristics of frontier orbits of metal sites in galena and molybdenite were analyzed. It is pointed out that the symmetry of frontier orbits of the inhibitors is the key to affect the selectivity of inhibitors.

  • 加载中
  • [1] 贾红秀, 高丽梅, 姜威. 钼市场30年回顾与展望[J]. 中国钼业, 2006(1): 42-47. doi: 10.3969/j.issn.1006-2602.2006.01.012

    CrossRef Google Scholar

    JIA H X, GAO L M, JIANG W. Review of the 30 year s' molybdenum market and its prospect[J]. China Molybdenum Industry, 2006(1): 42-47. doi: 10.3969/j.issn.1006-2602.2006.01.012

    CrossRef Google Scholar

    [2] 杜科让. 我国钼矿资源开采利用现状及存在的问题分析[J]. 科技资讯, 2011(19): 148. doi: 10.3969/j.issn.1672-3791.2011.19.109

    CrossRef Google Scholar

    DU K R. Analysis on the present situation and existing problems of molybdenum mining and utilization in China[J]. Science & Technology Information, 2011(19): 148. doi: 10.3969/j.issn.1672-3791.2011.19.109

    CrossRef Google Scholar

    [3] 张文钲. 钼精矿降铅方法[J]. 中国钼业, 2003(4): 5-6+17. doi: 10.3969/j.issn.1006-2602.2003.04.002

    CrossRef Google Scholar

    ZHANG W Z. Method of reducing lead from molybdenite concentrates[J]. China Molybdenum Industry, 2003(4): 5-6+17. doi: 10.3969/j.issn.1006-2602.2003.04.002

    CrossRef Google Scholar

    [4] 李永贵. 磷诺克斯中毒及预防[J]. 中国钼业, 1999, 23(2): 35-38.

    Google Scholar

    LI Y G. The poisoning of pnokes and it' s prevention[J]. China Molybdenum Industry, 1999, 23(2): 35-38.

    Google Scholar

    [5] 陈建华, 冯其明. 新型有机抑制剂CTP对硫化矿的抑制性能[J]. 湖南有色金属, 1995(6): 29-30.

    Google Scholar

    CHEN J H, FENG Q M. Inhibition performance of new organic inhibitor CTP on sulfide ore[J]. Hunan Nonferrous Metals, 1995(6): 29-30.

    Google Scholar

    [6] 刘润清, 孙伟, 胡岳华. 铜铅分离有机抑制剂FCLS的研究[J]. 矿冶工程, 2009, 29(3): 29-32. doi: 10.3969/j.issn.0253-6099.2009.03.009

    CrossRef Google Scholar

    LIU R Q, SUN W, HU Y H. Study on organic depressant FCLS for separation of chalcopyrite and galena[J]. Mining And Metallurgical Engineering, 2009, 29(3): 29-32. doi: 10.3969/j.issn.0253-6099.2009.03.009

    CrossRef Google Scholar

    [7] 岳紫龙, 成建, 刘威. 河南某钼铅硫矿选矿试验研究[J]. 有色金属(选矿部分), 2015(1): 21-25. doi: 10.3969/j.issn.1671-9492.2015.01.006

    CrossRef Google Scholar

    YUE Z L, CHENG J, LIU W. The mineral processing research on a molybdenum-lead-sulfur ore in henan[J]. Nonferrous Metals(Mineral Processing Section), 2015(1): 21-25. doi: 10.3969/j.issn.1671-9492.2015.01.006

    CrossRef Google Scholar

    [8] 武俊杰, 孙阳, 缑明亮, 等. 陕西某钼铅多金属矿选矿试验[J]. 金属矿山, 2014, 32(11): 75-79.

    Google Scholar

    [9] WU J J, SUN Y, GOU M L, et al. Beneficiation test of Mo-Pb polymetallic ore in shaanxi[J]. Metal Mine, 2014, 32(11): 75-79.

    Google Scholar

    [10] 郭月琴, 孙志勇, 吴天骄, 等. 某钼铜硫多金属矿钼铜混合浮选分离研究[J]. 中国钼业, 2014(4): 32-37.

    Google Scholar

    GUO Y Q, SUN Z Y, WU T J, et al. Study on bulk flotation and separation of molybdenum and copper in a copper-molybdenum-sulfide polymetallic ore[J]. China Molybdenum Industry, 2014(4): 32-37.

    Google Scholar

    [11] 黄汝杰, 谢建宏, 张崇辉, 等. 陕西某含铅钼矿石选矿试验[J]. 金属矿山, 2013(7): 71-74. doi: 10.3969/j.issn.1001-1250.2013.07.019

    CrossRef Google Scholar

    HUANG R J, XIE J H, ZHANG C H, et al. Beneficiation tests of a molybdenum ore with lead from shaanxi[J]. Metal Mine, 2013(7): 71-74. doi: 10.3969/j.issn.1001-1250.2013.07.019

    CrossRef Google Scholar

    [12] 唐平宇, 田江涛, 葛敏, 等. 从钼铅硫化矿石中制备高品质钼精矿研究[J]. 矿冶工程, 2013, 33(1): 45-48. doi: 10.3969/j.issn.0253-6099.2013.01.012

    CrossRef Google Scholar

    TANG P Y, TIAN J T, GE M, et al. Preparing high quality molybdenum concentrate from Molybdenum-lead sulfide ores[J]. Mining And Metallurgical Engineering, 2013, 33(1): 45-48. doi: 10.3969/j.issn.0253-6099.2013.01.012

    CrossRef Google Scholar

    [13] 宋振国. 某难选钼矿选矿工艺技术研究[J]. 有色金属(选矿部分), 2012(1): 18-21. doi: 10.3969/j.issn.1671-9492.2012.01.005

    CrossRef Google Scholar

    SONG Z G. Technological study on mineral processing of a refractory molybdenum ore[J]. Nonferrous Metals(Mineral Processing Section), 2012(1): 18-21. doi: 10.3969/j.issn.1671-9492.2012.01.005

    CrossRef Google Scholar

    [14] 吴贤, 曹亮, 马光, 等. 含铅钼矿综合回收新工艺研究[J]. 中国钼业, 2012, 36(5): 7-11. doi: 10.3969/j.issn.1006-2602.2012.05.002

    CrossRef Google Scholar

    WU X, CAO L, MA G, et al. Research on new technologies for comprehensive utilization of lead-containing molybdenum[J]. China Molybdenum Industry, 2012, 36(5): 7-11. doi: 10.3969/j.issn.1006-2602.2012.05.002

    CrossRef Google Scholar

    [15] 卫亚儒, 王宇斌, 李继璧, 等. 某难选钼矿的选矿试验研究[J]. 中国钼业, 2011, 35(3): 18-21. doi: 10.3969/j.issn.1006-2602.2011.03.004

    CrossRef Google Scholar

    WEI Y R, WANG Y B, LI J B, et al. The processing flowsheet study on a complex molybdenum ore[J]. China Molybdenum Industry, 2011, 35(3): 18-21. doi: 10.3969/j.issn.1006-2602.2011.03.004

    CrossRef Google Scholar

    [16] 李苏玲, 白晓卿. 东沟钼矿应用磷诺克斯降铅实践[J]. 金属矿山, 2010(3): 183-184.

    Google Scholar

    LI S L, BAI X Q. Application of phosphoruspnox to lead reduction in Donggou molybdenum mine[J]. Metal Mine, 2010(3): 183-184.

    Google Scholar

    [17] 周艳飞, 崔立凤. 江西某钼矿选矿试验研究[J]. 有色金属(选矿部分), 2012(3): 39-43. doi: 10.3969/j.issn.1671-9492.2012.03.011

    CrossRef Google Scholar

    ZHOU Y F, CUI L F. Research on mineral processing technology of a molybdenum ore in Jiangxi[J]. Nonferrous Metals(Mineral Processing Section), 2012(3): 39-43. doi: 10.3969/j.issn.1671-9492.2012.03.011

    CrossRef Google Scholar

    [18] 陈建华, 冯其明, 卢毅屏. 新型铜铅分离有机抑制剂ASC的研究[J]. 矿产保护与利用, 2000(5): 39-42. doi: 10.3969/j.issn.1001-0076.2000.05.010

    CrossRef Google Scholar

    CHEN J H, FENG Q M, LU Y P. Research on a new organic depressant ASC for separation chalcopyrite and galena[J]. conservation and utilization of mineral resources, 2000(5): 39-42. doi: 10.3969/j.issn.1001-0076.2000.05.010

    CrossRef Google Scholar

    [19] 蒋玉仁, 周立辉, 薛玉兰. 新型有机小分子抑制剂DPS的性能研究[J]. 有色金属工程, 2000(4): 33-40. doi: 10.3969/j.issn.2095-1744.2000.04.008

    CrossRef Google Scholar

    JIANG Y R, ZHOU L H, XUE Y L. Property and activity of a new low-molecular organic depressant-dps[J]. Nonferrous Metals, 2000(4): 33-40. doi: 10.3969/j.issn.2095-1744.2000.04.008

    CrossRef Google Scholar

    [20] 张泽强. 新型抑制剂在铜铅浮选分离中的应用[J]. 武汉化工学院学报, 1998, 20(4): 37-40.

    Google Scholar

    ZHANG Z Q. The use of new depressant in copper lead separation by flotation[J]. Journal Of Wuhan Institute of Chemical Technology, 1998, 20(4): 37-40.

    Google Scholar

    [21] 米丽平, 孙春宝, 李青, 等. 用组合抑制剂实现铜铅高效分离的试验研究[J]. 金属矿山, 2009(8): 53-56. doi: 10.3321/j.issn:1001-1250.2009.08.015

    CrossRef Google Scholar

    MI L P, SUN C B, LI Q, et al. Experimental Study on Copperlead Separation with the Combinatorial Depressant[J]. Metal Mine, 2009(8): 53-56. doi: 10.3321/j.issn:1001-1250.2009.08.015

    CrossRef Google Scholar

    [22] 魏明安, 孙传尧. 硫化铜, 铅矿物浮选分离研究现状及发展趋势[J]. 矿冶, 2008, 17(2): 6-16+33.

    Google Scholar

    WEI M A, SUN C Y. Review and development tendency of the copper and lead sulfides flotation separations[J]. Mining & Metallurgy, 2008, 17(2): 6-16+33.

    Google Scholar

    [23] 陈建华, 朱阳戈. 浮选体系矿物表面金属离子的半约束性质研究[J]. 中国矿业大学学报, 2021, 50(6): 1181-1188.

    Google Scholar

    CHEN J H, ZHU Y G. Study of semi-constrained properties of metal ions on mineral surface of flotation system[J]. Journal of China University of Mining & Technology, 2021, 50(6): 1181-1188.

    Google Scholar

    [24] TAGGART A, GUIDICE G D, ZIEHL O. The case of the chemical theory of flotation[J]. Trans, AIME, 1934, 112: 348-381.

    Google Scholar

    [25] COOK M A, NIXON J C. The theory of water-repellent films on solids formed by adsorption from aqueous solutions of heteropolar compounds. [J]. The Journal of Physical and Colloid Chemistry, 1950, 54(4): 445-459. doi: 10.1021/j150478a002

    CrossRef Google Scholar

    [26] SALEEB F, HANNA H. Correlation of adsorption, zeta potential, contact angle and flotation behaviour of calcium carbonate. J. Chem. ARE (United Arab Republic), 1969, 12: 229-236.

    Google Scholar

    [27] SALAMY S, NIXON J. Reaction between a mercury surface and some flotation reagents: and electochemical study. I. Polarization curves[J]. Australian Journal of Chemistry, 1954, 7(2): 146-156. doi: 10.1071/CH9540146

    CrossRef Google Scholar

    [28] YE C, CHEN J, JIN G. A DFT study on the effect of lattice impurities on the electronic structures and floatability of sphalerite[J]. Minerals Engineering, 2010, 23(14): 1120-1130. doi: 10.1016/j.mineng.2010.07.005

    CrossRef Google Scholar

    [29] CHEN J, YE C. A first-principle study of the effect of vacancy defects and impurities on the adsorption of O2 on sphalerite surfaces - sciencedirect[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 363(1/2/3): 56-63.

    Google Scholar

    [30] CHEN J H, CHEN Y, LI Y Q. Quantum-mechanical study of effect of lattice defects on surface properties and copper activation of sphalerite surface[J]. 中国有色金属学报(英文版), 2010, 20(6): 10.

    Google Scholar

    [31] LONG X, CHENY, CHEN J, et al. The effect of water molecules on the thiol collector interaction on the galena (PbS) and sphalerite (ZnS) surfaces: A DFT study[J]. Applied Surface Science, 2016, 389: 103-111.

    Google Scholar

    [32] LONG X H. Adsorption of ethyl xanthate on ZnS(110) surface in the presence of water molecules: A DFT study[J]. Applied Surface Science A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis & Behaviour of Materials, 2016, 370: 11-18.

    Google Scholar

    [33] YIN Z, CHEN S, XU Z, et al. Flotation separation of molybdenite from chalcopyrite using an environmentally-efficient depressant L-cysteine and its adsoption mechanism[J]. Minerals Engineering, 2020, 156: 106438. doi: 10.1016/j.mineng.2020.106438

    CrossRef Google Scholar

    [34] YANG B, ZENG M, YAN H, et al. Tiopronin as a novel copper depressant for the selective flotation separation of chalcopyrite and molybdenite[J]. Separation and Purification Technology, 2021, 266(6): 118576.

    Google Scholar

    [35] CHEN J, YANG X, LI Y, et al. Influences of electronic spin structures on the magnetic properties of Fe, Co and Ni ions and the adsorption of collectors[J]. Minerals Engineering, 2020, 154(6): 106405.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(5)

Article Metrics

Article views(1903) PDF downloads(44) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint