Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2021 Vol. 41, No. 4
Article Contents

SHI Mingming, XU Aoqin, PENG Chenglong, LI Zhen. Effect of Size Regulation of Natural Molybdenite on Electrochemical Performance for Lithium-ion Batteries[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 85-92. doi: 10.13779/j.cnki.issn1001-0076.2021.07.008
Citation: SHI Mingming, XU Aoqin, PENG Chenglong, LI Zhen. Effect of Size Regulation of Natural Molybdenite on Electrochemical Performance for Lithium-ion Batteries[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 85-92. doi: 10.13779/j.cnki.issn1001-0076.2021.07.008

Effect of Size Regulation of Natural Molybdenite on Electrochemical Performance for Lithium-ion Batteries

More Information
  • Corresponding author: LI Zhen
  • The size of anode materials has an essential effect on the performance of lithium-ion batteries. The grinding time was designed to prepare different sizes of natural molybdenite, and the relationship between the size and the electrochemical performance of lithium-ion batteries was explored. The average sizes of the samples abraded for 30 (M30), 60 (M60), and 90 min (M90) were 19.45, 13.14, and 11.23 μm, respectively. XRD and SEM show that the smaller the particle size, the smaller the grain size, and the more serious the edge crushing is. Electrochemical performance tests showed that the first cycle capacities of the three groups were 851, 797, and 649 mAh·g-1, respectively, and the capacity retention rates after 100 cycles were 30%, 38%, and 85%, respectively. M90 had the maximum lithium-ion diffusion coefficient of 3.29×10-10, and the pseudocapacitance was the main contribution to the capacity calculated at different CV scanning rates of 0.1~0.8 mV·s-1, which could realize rapid electron and ion shuttle. The smaller the size of natural molybdenite, the smaller the first cycle capacity, but better cycle and rate performance and faster reaction kinetics, and similar to the natural molybdenite layered lithium storage model were proposed to clarify the relationship between the size of natural molybdenite and the performance of the lithium-ion battery.

  • 加载中
  • [1] BAI J, ZHAO BC, LIN S, et al. Construction of hierarchical V4C3-MXene/MoS2/C nanohybrids for high rate lithium-ion batteries[J]. Nanoscale, 2020, 12(7): 1144-1154.

    Google Scholar

    [2] GOODENOUGH, J B. Evolution of strategies for modern rechargeable batteries[J]. Accounts of Chemical Research, 2013, 46(5): 1053-1061. doi: 10.1021/ar2002705

    CrossRef Google Scholar

    [3] LU XH, YU MH, WANG GM, et al. Flexible solid-state supercapacitors: design, fabrication and applications[J]. Energy Environmental Science, 2014, 7(7): 2160-2181. doi: 10.1039/c4ee00960f

    CrossRef Google Scholar

    [4] LIANG P, XING S, SHU HB, et al. Three-dimensional MoS2/graphene composites for reversible Li storage[J]. Journal of Inorganic Materials, 2016, 31(6): 575-580. doi: 10.15541/jim20150409

    CrossRef Google Scholar

    [5] ZHOU Y, LIU Y, ZHAO WX, et al. Growth of vertically aligned MoS2 nanosheets on Ti substrate through self-supported bonding interface for high-performance lithium-ion batteries: a general approach[J]. Journal of Materials Chemistry A, 2016, 4(16): 5932-5941. doi: 10.1039/C6TA01116K

    CrossRef Google Scholar

    [6] WANG DG, FAN LR, WANG SP, et al. Electrochemical properties of pyrite as lithium battery cathode materials[J]. Materials Review, 2012, 26(18): 93-96.

    Google Scholar

    [7] RONG H, WANG CG, ZHOU M. Synthesis and electrochemical performance of FeS2 microspheres as an anode for Li-ion batteries[J]. Chemical Journal of Chinese Universities, 2020, 41(3): 447-455.

    Google Scholar

    [8] SUN D, YE DL, LIU P, et al. MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries[J]. Advanced Energy Materials, 2018, 8(10): 1702383. doi: 10.1002/aenm.201702383

    CrossRef Google Scholar

    [9] LI SJ, TANG HH, GE P, et al. Electrochemical investigation of natural ore molybdentie (MoS2) as a first-hand anode for lithium storages[J]. ACS Applied Materials & Interfaces, 2018, 10(7): 6378-6389.

    Google Scholar

    [10] WANG XF, LI YJ, Guan ZRX, et al. Micro-MoS2 with excellent reversible sodium-ion storage[J]. Chemistry, 2015, 21(17): 6465-6468. doi: 10.1002/chem.201406635

    CrossRef Google Scholar

    [11] VU A, QIAN Y, STEIN A. Porous electrode materials for lithium-ion batteries how to prepare them and what makes them special[J]. Advanced Energy Materials, 2012, 2(9): 1056-1085. doi: 10.1002/aenm.201200320

    CrossRef Google Scholar

    [12] LUO H, ZHANG LZ, LU Y. Synthesis of MoS2/C submicrosphere by PVP-assisted hydrothermal method for lithium lon battery[J]. Advanced Materials Research, 2012, 531: 471-477. doi: 10.4028/www.scientific.net/AMR.531.471

    CrossRef Google Scholar

    [13] LIANG SQ, ZHOU J, LIU J, et al. PVP-assisted synthesis of MoS2 nanosheets with improved lithium storage properties[J]. CrystEngComm, 2013, 15(25): 4998-5002. doi: 10.1039/c3ce40392k

    CrossRef Google Scholar

    [14] CHANG K, CHEN WX. Single-layer MoS2/graphene dispersed in amorphous carbon: towards high electrochemical performances in rechargeable lithium ion batteries[J]. Journal of Materials Chemistry, 2011, 21(43): 17175. doi: 10.1039/c1jm12942b

    CrossRef Google Scholar

    [15] UTTAM KUMAR SEN, SAGAR MITRA. High-rate and high-energy-density lithium-ion battery anode containing 2D MoS2 nanowall and cellulose binder[J]. ACS Applied Materials & Interfaces, 2013, 5(4): 1240-1247.

    Google Scholar

    [16] CHANG K, CHEN WX, MA L, et al. Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries[J]. Journal of Materials Chemistry, 2011, 21(17): 6251-6257. doi: 10.1039/c1jm10174a

    CrossRef Google Scholar

    [17] LEI ZD, XU LQ, JIAO YL, et al. Strong coupling of MoS2 nanosheets and nitrogen-doped graphene for high-performance pseudocapacitance lithium Storage[J]. Small, 2018, 14(25): 1704410. doi: 10.1002/smll.201704410

    CrossRef Google Scholar

    [18] YE W, WU FF, SHI NX, et al. Metal-Semiconductor phase twinned hierarchical MoS2 nanowires with expanded interlayers for sodium-ion batteries with ultralong cycle life[J]. Small, 2019, 16(3): 1906607.

    Google Scholar

    [19] ZHU ZQ, TANG YX, LV ZS, et al. Fluoroethylene carbonate enabling robust LiF-rich solid electrolyte interphase to enhance the stability of MoS2 anode for lithium ion storage[J]. Angewandte Chemie, 2018, 57(14): 3656-3660. doi: 10.1002/anie.201712907

    CrossRef Google Scholar

    [20] BAI J, ZHAO BC, SHUAI L, et al. Construction of hierarchical V4C3-MXene/MoS2/C nanohybrids for high rate lithium-ion batteries[J]. Nanoscale, 2020, 12(2): 1144-1154. doi: 10.1039/C9NR07646H

    CrossRef Google Scholar

    [21] FANG YJ, LUAN DY, YE C, et al. Rationally designed three-layered Cu2S@Carbon@MoS2 hierarchical nanoboxes for efficient sodium storage[J]. Angewandte Chemie International Edition, 2020, 59(18): 7178-7183. doi: 10.1002/anie.201915917

    CrossRef Google Scholar

    [22] FUJIMOTO H, MABUCHI A, TOKUMITSU K, et al. Effect of crystallite size on the chemical compositions of the stage 1 alkali metal-graphite intercalation compounds[J]. Carbon, 1994, 32(2): 193-198. doi: 10.1016/0008-6223(94)90182-1

    CrossRef Google Scholar

    [23] ZAGHIB K, BROCHU F, GUERFI A, et al. Effect of particle size on lithium intercalation rates in natural graphite[J]. Journal of Power Sources, 2001, 103(1): 140-146. doi: 10.1016/S0378-7753(01)00853-9

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(2241) PDF downloads(89) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint