Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2021 Vol. 41, No. 3
Article Contents

HU Pan, GU Weile, TIAN Jian, ZHU Yanchao, TANG Fan, LIU Min, XU Yifan, CAO Weiqing. Research Progress and Thinking on the Preparation of Calcium Carbonate Whiskers from Calcium-containing Minerals and Solid Waste[J]. Conservation and Utilization of Mineral Resources, 2021, 41(3): 81-88. doi: 10.13779/j.cnki.issn1001-0076.2021.07.005
Citation: HU Pan, GU Weile, TIAN Jian, ZHU Yanchao, TANG Fan, LIU Min, XU Yifan, CAO Weiqing. Research Progress and Thinking on the Preparation of Calcium Carbonate Whiskers from Calcium-containing Minerals and Solid Waste[J]. Conservation and Utilization of Mineral Resources, 2021, 41(3): 81-88. doi: 10.13779/j.cnki.issn1001-0076.2021.07.005

Research Progress and Thinking on the Preparation of Calcium Carbonate Whiskers from Calcium-containing Minerals and Solid Waste

More Information
  • As one of the most extensive industrial raw materials, calcium carbonate is widely used in plastics, rubber, papermaking, coatings, food, medicine, electronics and other industries. Calcium carbonate whiskers with special fibrous morphology have the advantages of low cost, wide sources, and environmental protection of the product itself and production process. Moreover, it has excellent properties such as high strength, high modulus, and high elongation, and it has gradually replaced other costly fiber materials as a reinforcing agent, toughening agent and filler for composite materials. Based on the preparation and industrialization of calcium-based materials for many years, this article discusses the research of calcium carbonate whisker materials in detail from the perspectives of preparation methods and raw materials of calcium carbonate whiskers. The advantages and disadvantages of various current preparation methods of calcium carbonate whiskers are analyzed, and the direction of preparing calcium carbonate whiskers from diverse raw materials such as industrial waste and domestic waste is prospected.

  • 加载中
  • [1] R. BROOKS, L. M. CLARK, E. F. THURSTON. Calcium carbonate and its hydrates Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1950, 243(86): 145–167.

    Google Scholar

    [2] ZHAO YZ, HABRAKEN W J E M, GALINA M, et al. A hydrated crystalline calcium carbonate phase: Calcium carbonate hemihydrate[J]. Science, 2019, 363(6425): 396-400. doi: 10.1126/science.aav0210

    CrossRef Google Scholar

    [3] HAMMAD SAYLAT, MINGLI CAO, MUHAMMAD MASOOD, et al. Preparation and applications of calcium carbonate whisker with a special focus on construction materials[J]. Construction and Building Materials, 2020, 236(0950-0618), 10.1016/j.conbuildmat.2019.117613. doi: 10.1016/j.conbuildmat.2019.117613

    CrossRef Google Scholar

    [4] ANTAO S M, HASSAN I. Temperature dependence of the structural parameters in the transformation of aragonite to calcite, as determined from in situ synchrotron powder X-ray-diffratction data[J]. Canadian Mineralogist, 2011, 48(5): 1225-1236.

    Google Scholar

    [5] JING YW, NAI XY, LI D, et al. Reinforcing polypropylene with calcium carbonate of different morphologies and polymorphs[J]. Science and Engineering of Composite Materials, 2018, 25(4), 10.1515/secm-2015-0307. doi: 10.1515/secm-2015-0307

    CrossRef Google Scholar

    [6] HAN J S, JUNG S Y, KANG D S, et al. Development of flexible calcium carbonate for papermaking filler[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(24): 8994–9001.

    Google Scholar

    [7] 陈锐, 罗康碧, 李沪萍, 谭艳霞. 晶须在材料中的应用[J]. 化工科技, 2007(6): 58-61. doi: 10.3969/j.issn.1008-0511.2007.06.015

    CrossRef Google Scholar

    [8] 程优优. 碳酸钙晶须的制备及对天然橡胶补强性能的研究[J]. 中国粉体工业, 2017(4): 10-13.

    Google Scholar

    [9] 操欢, 朱星宇, 袁世炬. 石膏晶须及其在造纸上的应用[J]. 湖北造纸, 2012(Z1): 83-85.

    Google Scholar

    [10] 钱军民, 金志浩. 填料碳酸钙的制备及其形状与晶型控制研究进展[J]. 化工矿物与加工, 2002(4): 1-4, 10. doi: 10.3969/j.issn.1008-7524.2002.04.001

    CrossRef Google Scholar

    [11] 王会利, 杨娟娟, 刘斌, 陈寿田. 碳酸钙晶须在涂料中的应用[J]. 涂料工业, 2004(4): 52-54. doi: 10.3969/j.issn.0253-4312.2004.04.016

    CrossRef Google Scholar

    [12] 姚伯龙, 焦钰, 杜郑帅, 倪才华, 宋洪昌. 室温自交联乳液制备及晶须改性涂料性能研究[J]. 光谱实验室, 2008(6): 1070-1072. doi: 10.3969/j.issn.1004-8138.2008.06.013

    CrossRef Google Scholar

    [13] ZHANG N, CHEN Y. Nanoscale plastic deformation mechanism in single crystal aragonite[J]. Journal of Materials Science, 2013, 48(2): 785-796. doi: 10.1007/s10853-012-6796-1

    CrossRef Google Scholar

    [14] YOREO J D, GILBERT P U, SOMMERDIJK N A, et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments[J]. Science, 2015, 349(6247), 10.1126/science.aaa6760. doi: 10.1126/science.aaa6760

    CrossRef Google Scholar

    [15] BOON, MATTHEW, RICKARD, et al. Stabilization of Aragonite: Role of Mg2+ and Other Impurity Ions[J]. Crystal Growth & Design, 2020, 20(8): 5006-5017.

    Google Scholar

    [16] 陈华雄, 宋永才. 文石型碳酸钙晶须的制备研究[J]. 材料科学与工程学报, 2004(2): 197-200. doi: 10.3969/j.issn.1673-2812.2004.02.011

    CrossRef Google Scholar

    [17] 李庆蕾. 碳酸钙晶须制备工艺研究及优化[D]. 杭州: 浙江大学, 2020.

    Google Scholar

    [18] WARY J L. Precipitation of Calcite and Aragonite[J]. J. Am. Chem. Soc, 1957, 79(9), 10.1021/ja01566a001. doi: 10.1021/ja01566a001

    CrossRef Google Scholar

    [19] LEE S W, KIM Y I, AHN J W. The use of iminodiacetic acid for low-temperature synthesis of aragonite crystal microrods: Correlation between aragonite crystal microrods and stereochemical effects[J]. International Journal of Mineral Processing, 2009, 92(3-4): 190-195. doi: 10.1016/j.minpro.2009.04.005

    CrossRef Google Scholar

    [20] WANG L, SONDI I, MATIJEVI E. Preparation of Uniform Needle-Like Aragonite Particles by Homogeneous Precipitation[J]. Journal of Colloid & Interface Science, 1999, 218(2): 545-553.

    Google Scholar

    [21] J. CHEN, L. XIANG. Controllable synthesis of calcium carbonate polymorphs at different temperatures[J]. Powder Technology, 2008, 189(1): 64-69.

    Google Scholar

    [22] CARLOS ROSSI, RAFAEL P, LOZANO. Hydrochemical controls on aragonite versus calcite precipitation in cave dripwaters[J]. Geochimica et Cosmochimica Acta, 2016, 192(1): 70-96.

    Google Scholar

    [23] 林若枫. 石钟乳与石笋[J]. 炎黄地理, 2020(1): 82-83.

    Google Scholar

    [24] YOSHIYUKI KOJIMA, AKIKO SADOTOMO, TAMOTSU YASUE. Control of crystal shape and modification of calcium carbonate prepared by precipitation from calcium hydrogencarbonate solution[J]. Journal of the Ceramic Society of Japan, 1992, 100(9): 1145-1153.

    Google Scholar

    [25] CHEBOTAREVA R. D, NANIEVA A. V, REMEZ S. V. Features of magnetic treatment of calcium bicarbonate waters[J]. Journal of Water Chemistry and Technology, 2020, 42(5): 490-498.

    Google Scholar

    [26] 胡光辉. 溶胶-凝胶技术研究及其应用[J]. 重庆工业高等专科学校学报, 2005(1): 26-29.

    Google Scholar

    [27] 韩志华, 曹林. CaCO3纳米线的制备及表征[J]. 无机材料学报, 2005(6): 71-74.

    Google Scholar

    [28] 谢元彦, 杨海林, 阮建明, 周忠诚. 溶胶-凝胶法制备碳酸钙晶须[J]. 粉末冶金材料科学与工程, 2009, 14(3): 164-168. doi: 10.3969/j.issn.1673-0224.2009.03.007

    CrossRef Google Scholar

    [29] 李彬彬, 杨绍利, 赵均辉, 王尊. 超重力技术及其在材料制备中的应用[J]. 广州化工, 2015, 43(23): 53-55. doi: 10.3969/j.issn.1001-9677.2015.23.015

    CrossRef Google Scholar

    [30] CHEN J F, WANG Y H, GUO F, et al. Synthesis of nanoparticles with novel technology: high-gravity reactive precipitation[J]. Industrial & Engineering Chemistry Research, 2000, 39(4): 948-954.

    Google Scholar

    [31] CHAO Y, JIN L Synthesis of aragonite CaCO3 nanocrystals by reactive crystallization in a high shear mixer[J]. Crystal Research & Technology, 2017, 52(5).

    Google Scholar

    [32] WANG M, ZOU H K, SHAO L, et al. Controlling factors and mechanism of preparing needlelike CaCO3 under high-gravity environment[J]. Powder Technology, 2004, 142(2-3): 166-174. doi: 10.1016/j.powtec.2004.05.003

    CrossRef Google Scholar

    [33] 裴冰野. 利用方解石制备碳酸钙晶须及其反应机理的研究[D]. 沈阳化工大学, 2018.

    Google Scholar

    [34] 李会杰, 黄娜娜, 仇龙, 等. 白云石制备碳酸钙晶须及其机理的研究[J]. 人工晶体学报, 2020, 49(1): 119-124, 137. doi: 10.3969/j.issn.1000-985X.2020.01.020

    CrossRef Google Scholar

    [35] 罗东山. 石棉县大理石尾矿资源化综合利用技术研究[D]. 西南科技大学, 2020.

    Google Scholar

    [36] 刘万伟. 探讨化工工业三废处理技术方法及环境保护[J]. 科技风, 2020(10): 141.

    Google Scholar

    [37] SAID A, MATTILA H P, JAERVINEN M, et al. Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2[J]. Applied Energy, 2013, 112(dec. ): 765-771.

    Google Scholar

    [38] MATTILA H P, ZEVENHOVEN R. Production of precipitated calcium carbonate from steel converter slag and other calcium-containing industrial wastes and residues[J]. Advances in Inorganic Chemistry, 2014, 66(1): 347-384.

    Google Scholar

    [39] 刘咏, 闫利花, 汤建伟, 等. 磷石膏脱硫残渣制备碳酸钙晶须及改性工艺研究[C]全国磷复肥/磷化工技术创新. 2015: 209-214.

    Google Scholar

    [40] SONG K, KIM W, BANG J H, et al. Polymorphs of pure calcium carbonate prepared by the mineral carbonation of flue gas desulfurization gypsum[J]. Materials and Design, 2015, 83(suppl 3): 308-313.

    Google Scholar

    [41] WANG Y, LI Y, YUAN A, et al. Preparation of calcium sulfate whiskers by carbide slag through hydrothermal method[J]. Crystal Research & Technology, 2015, 49(10): 800-807.

    Google Scholar

    [42] 刘飞, 袁铭鸿, 曹建新. 利用电石渣制备碳酸钙晶须的初步研究[J]. 贵州大学学报(自然科学版), 2010, 27(2): 126-128. doi: 10.3969/j.issn.1000-5269.2010.02.033

    CrossRef Google Scholar

    [43] LU, FANG, YANFEN, et al. Self-sustaining carbon capture and mineralization via electrolytic carbonation of coal fly ash. [J]. Chemical Engineering Journal, 2016, 306: 330-335. doi: 10.1016/j.cej.2016.07.060

    CrossRef Google Scholar

    [44] 屠志康. 利用双氰胺工业废渣制取高分子合成制品填充剂[P]. 中国专利, 93117020, 1998-11-18.

    Google Scholar

    [45] 赵海鹏. 双氰胺废渣制备碳酸钙晶须联产氯化铵工艺研究[D]. 宁夏大学, 2016.

    Google Scholar

    [46] ZHANG DK, ZHOU XQ, LIU CL, et al. Crystallization of calcium carbonate from lithium-containing brines[J]. Journal of Crystal Growth, 2021, 556, 10.1016/j.jcrysgro.2020.125989. doi: 10.1016/j.jcrysgro.2020.125989

    CrossRef Google Scholar

    [47] SEBASTIAN TEIR, TUUKKA KOTIRANTA, JOUKO PAKARINEN, et al. Case study for production of calcium carbonate from carbon dioxide in flue gases and steelmaking slag[J]. Journal of CO2 Utilization, 2016, 14: 37-46. doi: 10.1016/j.jcou.2016.02.004

    CrossRef Google Scholar

    [48] SATOSHI KODAMA, TAIKI NISHIMOTO, NAOKI YAMAMOTO, et al. Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution[J]. Energy, 2008, 33(5): 776-784. doi: 10.1016/j.energy.2008.01.005

    CrossRef Google Scholar

    [49] LU SQ, MIAO YM, LIU ZQ. Mineralization of simulated flue gas to prepare CaCO3 whisker using suspended CaSO4[J]. Journal of the Chinese Chemical Society, 2020, 67(8): 1408-1414. doi: 10.1002/jccs.201900493

    CrossRef Google Scholar

    [50] 李佳乐, 王新宇, 陈天艺, 杨星硕, 赵颖颖, 袁俊生. 连续鼓泡法海水碳化制备碳酸钙文石的研究[J]. 无机盐工业, 2021, 53(2): 42-46.

    Google Scholar

    [51] ARAKI Y, TSUKAMOTO K, OYABU N, et al. Atomic resolution imaging of aragonite (001) surface in water by frequency modulation atomic force microscopy[J]. Japanese Journal of Applied Physics, 2012, 51(8ISSUE4): 08KB09-08KB09-4.

    Google Scholar

    [52] A N Z, B S Y, C L X, et al. Nanoscale toughening mechanism of nacre tablet[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 53: 200-209. doi: 10.1016/j.jmbbm.2015.08.020

    CrossRef Google Scholar

    [53] VERMA N, KUMAR V, BANSAL M C, et al. Utilization of egg shell waste in cellulase production by neurospora crassa under wheat bran-based solid state fermentation[J]. Polish Journal of Environmental Studies, 2012, 21(2): 491-497.

    Google Scholar

    [54] KHAN M D, AHN J W, NAM G. Environmental benign synthesis, characterization and mechanism studies of green calcium hydroxide nano-plates derived from waste oyster shells[J]. Journal of Environmental Management, 2018, 223(OCT. 1): 947-951.

    Google Scholar

    [55] M. FELIPE-SESé, ELICHE-QUESADA D, CORPAS-IGLESIAS F A. The use of solid residues derived from different industrial activities to obtain calcium silicates for use as insulating construction materials[J]. Ceramics International, 2011, 37(8): 3019-3028.

    Google Scholar

    [56] ALOK MITTAL, MEENU TEOTIA, R.K. SONI, JYOTI MITTAL. Applications of egg shell and egg shell membrane as adsorbents: A review[J]. Journal of Molecular Liquids, 2016, 223: 376-387.

    Google Scholar

    [57] HABTE L, KHAN M D, SHIFERAW N, et al. Synthesis, characterization and mechanism study of green aragonite crystals from waste biomaterials as calcium supplement[J]. Sustainability, 2020, 12(12): 5062, 10.3390/su12125062. doi: 10.3390/su12125062

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(2)

Article Metrics

Article views(3249) PDF downloads(203) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint