Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2021 Vol. 41, No. 6
Article Contents

CHEN Xinyi, FANG Minghao, WANG Qi, LIU Yangai, WU Xiaowen, MI Ruiyu, HUANG zhaohui, MIN Xin. Low-Temperature Preparation of Feldspar-Corundum Composite Ceramics from Red Mud[J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 103-111. doi: 10.13779/j.cnki.issn1001-0076.2021.06.012
Citation: CHEN Xinyi, FANG Minghao, WANG Qi, LIU Yangai, WU Xiaowen, MI Ruiyu, HUANG zhaohui, MIN Xin. Low-Temperature Preparation of Feldspar-Corundum Composite Ceramics from Red Mud[J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 103-111. doi: 10.13779/j.cnki.issn1001-0076.2021.06.012

Low-Temperature Preparation of Feldspar-Corundum Composite Ceramics from Red Mud

More Information
  • Using bayer red mud as the main raw material, adding vanadium clay clinker and lithium porcelain stone, feldspar-corundum ceramics were prepared at low temperature. The phase composition and morphology of ceramics were analyzed by X-ray diffractometer (XRD) and scanning electron microscope (SEM). The effects of the amount of red mud and sintering temperature on the volume density, shrinkage, water absorption, porosity and compressive strength of ceramics were studied. The results show that: When the amount of red mud is 60% and the sintering temperature is 1 050 ℃, the properties of the multiphase ceramics are the best, and the phase composition is anhydrite, corundum, hematite, quartz, glass phase and a small amount of mullite phase. The volume density is 1.85 g/cm3, the shrinkage rate is 7.34%, the water absorption rate is 19.87%, and the compressive strength is 79.48 mpa. The dissolution experiment of harmful components further showed that sodium, potassium, calcium and other harmful elements were stabilized in the product, which has a wide application prospect in the field of wall decoration and refractory materials.

  • 加载中
  • [1] LI S, KANG Z, LIU W, et al. Reduction behavior and direct reduction kinetics of red mud-biomass composite pellets[J]. Journal of Sustainable Metallurgy, 2021, 7(1): 126-135. doi: 10.1007/s40831-020-00326-y

    CrossRef Google Scholar

    [2] ZHANG X, ZHOU K, LEI Q, et al. Selective removal of iron from acid leachate of red mud by aliquat 336[J]. Jom, 2019, 71(12): 4608-4615. doi: 10.1007/s11837-019-03801-4

    CrossRef Google Scholar

    [3] LIU Y, QIN Z, CHEN B. Experimental research on magnesium phosphate cements modified by red mud[J]. Construction and Building Materials, 2020, 231: 117131. doi: 10.1016/j.conbuildmat.2019.117131

    CrossRef Google Scholar

    [4] ZHAO H, GOU H. Unfired bricks prepared with red mud and calcium sulfoaluminate cement: Properties and environmental impact[J]. Journal of Building Engineering, 2021, 38: 102238. doi: 10.1016/j.jobe.2021.102238

    CrossRef Google Scholar

    [5] LIU X, HAN Y, HE F, et al. Characteristic, hazard and iron recovery technology of red mud - A critical review[J]. J Hazard Mater., 2021, 420: 126542. doi: 10.1016/j.jhazmat.2021.126542

    CrossRef Google Scholar

    [6] MONNIN C, BOUSSOUGOU A L K, OLIVA P, et al. Characterization of the submarine disposal of a Bayer effluent (Gardanne alumina plant, southern France): Ⅱ. Chemical composition of the clarified effluent and mineralogical composition of the concretions formed by its discharge in the Mediterranean Sea[J]. Environmental Advances, 2021, 5: 100087. doi: 10.1016/j.envadv.2021.100087

    CrossRef Google Scholar

    [7] ARCHAMBO M S, KAWATRA S K. Utilization of bauxite residue: recovering Iron values using the iron nugget process[J]. Mineral Processing and Extractive Metallurgy Review, 2020, 42(4): 222-230.

    Google Scholar

    [8] ARROYO F, LUNA-GALIANO Y, LEIVA C, et al. Environmental risks and mechanical evaluation of recycling red mud in bricks[J]. Environ Res., 2020, 186: 109537. doi: 10.1016/j.envres.2020.109537

    CrossRef Google Scholar

    [9] AGRAWAL S, DHAWAN N. Evaluation of red mud as a polymetallic source-A review[J]. Minerals Engineering, 2021, 171: 107084. doi: 10.1016/j.mineng.2021.107084

    CrossRef Google Scholar

    [10] 廖仕臻, 杨金林, 马少健. 赤泥综合利用研究进展[J]. 矿产保护与利用, 2019, 39(3): 21-27.

    Google Scholar

    [11] 曾华, 吕斐, 胡广艳, 等. 拜耳法赤泥脱碱新工艺及其土壤化研究[J]. 矿产保护与利用, 2019, 39(3): 1-7.

    Google Scholar

    [12] RAI S, BAHADURE S, CHADDHA MJ, et al. Disposal practices and utilization of red mud (Bauxite Residue)a review in indian context and abroad[J]. Journal of Sustainable Metallurgy, 2020, 6(4): 1-8.

    Google Scholar

    [13] AGRAWAL S, RAYAPUDI V, DHAWAN N. Comparison of microwave and conventional carbothermal reduction of red mud for recovery of iron values[J]. Minerals Engineering, 2019, 132: 202-210. doi: 10.1016/j.mineng.2018.12.012

    CrossRef Google Scholar

    [14] KUMAR A, SARAVANAN T J, BISHT K, et al. A review on the utilization of red mud for the production of geopolymer and alkali activated concrete[J]. Construction and Building Materials, 2021, 302: 124170. doi: 10.1016/j.conbuildmat.2021.124170

    CrossRef Google Scholar

    [15] COLLIN G, YUN H, VIGNESWAR K, et al. Application of modified red mud in environmentally-benign applications: A review paper[J]. Environmental Engineering Research: Environmental Engineering Research, 2020, 25(6): 795-806.

    Google Scholar

    [16] KHAIRUL M A, ZANGANEH J, MOGHTADERI B. The composition, recycling and utilisation of Bayer red mud[J]. Resources, Conservation and Recycling, 2019, 141: 483-498. doi: 10.1016/j.resconrec.2018.11.006

    CrossRef Google Scholar

    [17] GAO F, ZHANG J, DENG X, et al. Comprehensive Recovery of Iron and Aluminum from Ordinary Bayer Red Mud by Reductive Sintering-Magnetic Separation-Digesting Process[J]. Jom, 2019, 71(9): 2936-2943. doi: 10.1007/s11837-018-3311-4

    CrossRef Google Scholar

    [18] WANG S, JIN H, DENG Y, et al. Comprehensive utilization status of red mud in China: A critical review[J]. Journal of Cleaner Production, 2021, 289: 125136. doi: 10.1016/j.jclepro.2020.125136

    CrossRef Google Scholar

    [19] LIU Y, LI X, ZHANG W, et al. Effect and mechanisms of red mud catalyst on pyrolysis remediation of heavy hydrocarbons in weathered petroleum-contaminated soil[J]. Journal of Environmental Chemical Engineering, 2021, 9: 106090. doi: 10.1016/j.jece.2021.106090

    CrossRef Google Scholar

    [20] MUKIZA E, ZHANG L, LIU X, et al. Utilization of red mud in road base and subgrade materials: A review[J]. Resources, Conservation and Recycling, 2019, 141: 187-199. doi: 10.1016/j.resconrec.2018.10.031

    CrossRef Google Scholar

    [21] SUTAR H, MISHRA S C, SAHOO S K, et al. Progress of red mud utilization: an overview[J]. American Chemical Science Journal, 2014, 4(3): 255-279. doi: 10.9734/ACSJ/2014/7258

    CrossRef Google Scholar

    [22] PANDA S, COSTA R B, SHAH S S, et al. Biotechnological trends and market impact on the recovery of rare earth elements from bauxite residue (red mud) - A review[J]. Resources, Conservation and Recycling, 2021, 171: 105645. doi: 10.1016/j.resconrec.2021.105645

    CrossRef Google Scholar

    [23] ZONG Y B, CHEN W H, FAN Y, et al. Complementation in the composition of steel slag and red mud for preparation of novel ceramics[J]. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(9): 1010-1017. doi: 10.1007/s12613-018-1651-2

    CrossRef Google Scholar

    [24] 柳佳建, 陈伟, 周康根, 等. 赤泥中铁的回收利用研究进展[J]. 矿产保护与利用, 2021, 41(3): 70-75.

    Google Scholar

    [25] 雷清源, 周康根, 何德文, 等. 赤泥中钪和钛的回收研究进展[J]. 矿产保护与利用, 2019, 39(3): 15-20.

    Google Scholar

    [26] LOPES D V, DURANA E, CESCONETO F R, et al. Direct processing of cellular ceramics from a single red mud precursor[J]. Ceramics International, 2020, 46(10): 16700-16707. doi: 10.1016/j.ceramint.2020.03.244

    CrossRef Google Scholar

    [27] 曾超, 何维. 赤泥物相的X射线粉末衍射Rietveld法定量分析研究[J]. 冶金分析, 2014, 34(8): 1-6.

    Google Scholar

    [28] 童思意, 刘长淼, 刘玉林, 等. 我国固体废弃物制备陶粒的研究进展[J]. 矿产保护与利用, 2019, 39(3): 140-150.

    Google Scholar

    [29] 邢芩瑞, 马远, 李宇. 不同CaO源固废对钙长石全固废陶瓷矿相和性能的影响[J]. 有色金属科学与工程, 2021, 12(1): 39-48.

    Google Scholar

    [30] 张伟国, 马小娥, 魏红姗, 等. 拜耳法赤泥基轻质保温陶瓷的中试生产[J]. 轻金属, 2020(11): 11-15.

    Google Scholar

    [31] 魏红姗, 马小娥, 管学茂, 等. 拜耳法赤泥基轻质保温陶瓷的制备[J]. 硅酸盐通报, 2019, 38(3): 749-751.

    Google Scholar

    [32] 张辉, 李安林, 曾小州, 等. 以赤泥为助熔剂制备长石质发泡陶瓷[J]. 硅酸盐通报, 2019, 38(12): 4002-4006.

    Google Scholar

    [33] 王清涛, 李森, 于华芹, 等. 利用赤泥制备轻质高强保温装饰一体化建筑材料[J]. 硅酸盐通报, 2018, 37(4): 1393-1398.

    Google Scholar

    [34] 王清涛, 李森, 李峰芝, 等. 赤泥掺加量对保温装饰建筑陶瓷性能的影响[J]. 非金属矿, 2017, 40(5): 41-44.

    Google Scholar

    [35] 李勇冲, 刘永杰, 孙杰璟, 等. 利用赤泥制备闭孔超轻质泡沫陶瓷的研究[J]. 新型建筑材料, 2017, 44(11): 113-116.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(4)

Article Metrics

Article views(1093) PDF downloads(4) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint