Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2021 Vol. 41, No. 6
Article Contents

ZHU Rui, LI Chunquan, DING Tianle, SUN Zhiming, ZHENG Shuilin. Characteristics of Kaolinite and Research Progress of its Composite Catalytic Materials[J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 57-65. doi: 10.13779/j.cnki.issn1001-0076.2021.06.007
Citation: ZHU Rui, LI Chunquan, DING Tianle, SUN Zhiming, ZHENG Shuilin. Characteristics of Kaolinite and Research Progress of its Composite Catalytic Materials[J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 57-65. doi: 10.13779/j.cnki.issn1001-0076.2021.06.007

Characteristics of Kaolinite and Research Progress of its Composite Catalytic Materials

More Information
  • In recent years, kaolinite-based composite catalytic materials have been widely used in light/electrolytic water hydrogen production, fluidized catalytic cracking, wastewater and waste gas treatment and environmental antibacterial due to their low cost, excellent chemical stability, and high-efficiency catalytic performance. Its renewable cycle characteristics and excellent performance can contribute to the construction of clear waters and green mountains as well as help to achieve the carbon peaking and carbon neutrality goals. In this paper, the latest progress of kaolinite-based catalytic materials in different catalytic fields and their synthesis and application are reviewed. The application of kaolinite-based photocatalytic materials, kaolinite for catalytic cracking, kaolinite-based persulfate active materials, kaolinite-based H2O2 active materials and electrocatalytic materials are mainly introduced. Meanwhile, the action mechanism and application form of kaolinite in various catalytic materials are also introduced. Finally, the development of kaolinite-based catalytic materials in the field of environmental purification and energy was summarized and prospected.

  • 加载中
  • [1] 阴江宁, 丁建华, 陈炳翰, 等. 中国高岭土矿成矿地质特征与资源潜力评价[J/OL]. 中国地质: 1-20[2022-01-09]. http://kns.cnki.net/kcms/detail/11.1167.p.20210510.0910.002.html.

    Google Scholar

    [2] 李国栋, 殷尧禹, 卢瑞, 等. 高岭土提纯工艺及其应用研究进展[J]. 矿产保护与利用, 2018, (4): 142-150.

    Google Scholar

    [3] YADAV V B, GADI R, KALRA S. Clay based nanocomposites for removal of heavy metals from water: a review[J]. Journal of Environmental Management, 2019, 232: 803-817. doi: 10.1016/j.jenvman.2018.11.120

    CrossRef Google Scholar

    [4] SZABó P, ZSIRKA B, FERTIG D, et al. Delaminated kaolinites as potential photocatalysts: tracking degradation of Na-benzenesulfonate test compound adsorbed on the dry surface of kaolinite nanostructures[J]. Catalysis Today, 2017, 287: 37-44. doi: 10.1016/j.cattod.2017.01.051

    CrossRef Google Scholar

    [5] REN B, MIN F, LIU L, et al. Adsorption of different PAM structural units on kaolinite (001) surface: Density functional theory study[J]. Applied Surface Science, 2020, 504: 144324. doi: 10.1016/j.apsusc.2019.144324

    CrossRef Google Scholar

    [6] 卢承龙, 苟晓琴, 韩海生, 等. 天然铝硅酸盐矿物对氟离子的吸附性能研究[J]. 矿产保护与利用, 2020, 40 (1): 28-36.

    Google Scholar

    [7] 刘杰, 曹亦俊, 李晓恒, 等. 溶液环境对高岭石分散行为的影响[J]. 矿产保护与利用, 2017, (4): 35-39.

    Google Scholar

    [8] 宁可心, 张婷, 王毅, 等. 黏土类吸附剂去除水中污染物的研究进展[J]. 化工新型材料, 2020, 48(8): 276-280.

    Google Scholar

    [9] CAO Z, WANG Q, CHENG H. Recent advances in kaolinite-based material for photocatalysts[J]. Chinese Chemical Letters, 2021, 32(9): 2617-2628. doi: 10.1016/j.cclet.2021.01.009

    CrossRef Google Scholar

    [10] ZHAO R, ZHANG X, SU Y, et al. Unprecedented catalytic activity of coal gangue toward environ-mental remediation: Key role of hydroxyl groups[J]. Chemical Engineering Journal, 2020, 380: 122432. doi: 10.1016/j.cej.2019.122432

    CrossRef Google Scholar

    [11] LI C, HUANG Y, DONG X, et al. Highly efficient activation of peroxymonosulfate by natural negatively-charged kaolinite with abundant hydroxyl groups for the degradation of atrazine[J]. Applied Catalysis B: Environmental, 2019, 247: 10-23. doi: 10.1016/j.apcatb.2019.01.079

    CrossRef Google Scholar

    [12] LYU L, HAN M, CAO W, et al. Efficient Fenton-like process for organic pollutant degradation on Cu-doped mesoporous polyimide nanocomposites[J]. Environmental Science: Nano, 2019, 6(3): 798-808. doi: 10.1039/C8EN01365A

    CrossRef Google Scholar

    [13] LI C, ZHU N, YANG S, et al. A review of clay based photocatalysts: Role of phyllosilicate mineral in interfacial assembly, microstructure control and performance regulation[J]. Chemosphere, 2021, 273: 129723. doi: 10.1016/j.chemosphere.2021.129723

    CrossRef Google Scholar

    [14] CAGLAR B, GUNER E K, OZDOKUR K V, et al. Application of BiFeO3 and Au/BiFeO3 decorated kaolinite nanocomposites as efficient photocatalyst for degradation of dye and electrocatalyst for oxygen reduction reaction[J]. Journal of Photochemistry and Photobiology a-Chemistry, 2021, 418: 113400. doi: 10.1016/j.jphotochem.2021.113400

    CrossRef Google Scholar

    [15] 李雪, 孙志明, 李春全, 等. 化学浸渍法制备CdS/高岭土复合材料及其光催化性能[J]. 矿业科学学报, 2017, 2(6): 588-594.

    Google Scholar

    [16] 孙志明, 李雪, 马瑞欣, 等. 浸渍-热聚合法制备g-C3N4/高岭土复合材料及其性能[J]. 功能材料, 2017, 48(8): 8018-8023.

    Google Scholar

    [17] DONG X, SUN Z, ZHANG X, et al. Construction of BiOCl/g-C3N4/kaolinite composite and its enhanced photocatalysis performance under visible-light irradiation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 84: 203-211. doi: 10.1016/j.jtice.2018.01.017

    CrossRef Google Scholar

    [18] LI C, SUN Z, SONG A, et al. Flowing nitrogen atmosphere induced rich oxygen vacancies overspread the surface of TiO2/kaolinite composite for enhanced photocatalytic activity within broad radiation spectrum[J]. Applied Catalysis B: Environmental, 2018, 236: 76-87. doi: 10.1016/j.apcatb.2018.04.083

    CrossRef Google Scholar

    [19] LI C, DONG X, ZHU N, et al. Rational design of efficient visible-light driven photocatalyst through 0D/2D structural assembly: Natural kaolinite supported monodispersed TiO2 with carbon regulation[J]. Chemical Engineering Journal, 2020, 396: 125311. doi: 10.1016/j.cej.2020.125311

    CrossRef Google Scholar

    [20] TAN Y, CHEN T, ZHENG S, et al. Adsorptive and photocatalytic behaviour of PANI/TiO2/metakaolin composites for the removal of xanthate from aqueous solution[J]. Minerals Engineering, 2021, 171: 107129. doi: 10.1016/j.mineng.2021.107129

    CrossRef Google Scholar

    [21] LI C, ZHU N, DONG X, et al. Tuning and controlling photocatalytic performance of TiO2/kaolinite composite towards ciprofloxacin: Role of 0D/2D structural assembly[J]. Advanced Powder Technology, 2020, 31(3): 1241-1252. doi: 10.1016/j.apt.2020.01.007

    CrossRef Google Scholar

    [22] LI C, SUN Z, ZHANG W, et al. Highly efficient g-C3N4/TiO2/kaolinite composite with novel three-dimensional structure and enhanced visible light responding ability towards ciprofloxacin and S. aureus[J]. Applied Catalysis B: Environmental, 2018, 220: 272-282. doi: 10.1016/j.apcatb.2017.08.044

    CrossRef Google Scholar

    [23] SUN Z, YUAN F, LI X, et al. Fabrication of novel cyanuric acid modified g-C3N4/Kaolinite composite with enhanced visible light-driven photocatalytic activity[J]. Minerals, 2018, 8(10): 437. doi: 10.3390/min8100437

    CrossRef Google Scholar

    [24] LI C, SUN Z, DONG X, et al. Acetic acid functionalized TiO2/kaolinite composite photocatalysts with enhanced photocatalytic performance through regulating interfacial charge transfer[J]. Journal of Catalysis, 2018, 367: 126-138. doi: 10.1016/j.jcat.2018.09.001

    CrossRef Google Scholar

    [25] ALFRED M O, OMOROGIE M O, BODEDE O, et al. Solar-active clay-TiO2 nanocomposites prepared via biomass assisted synthesis: Efficient removal of ampicillin, sulfamethoxazole and artemether from water[J]. Chemical Engineering Journal, 2020, 398: 125544. doi: 10.1016/j.cej.2020.125544

    CrossRef Google Scholar

    [26] ABUKHADRA M R, HELMY A, SHARAF M F, et al. Instantaneous oxidation of levofloxacin as toxic pharmaceutical residuals in water using clay nanotubes decorated by ZnO (ZnO/KNTs) as a novel photocatalyst under visible light source[J]. Journal of Environmental Management, 2020, 271: 111019. doi: 10.1016/j.jenvman.2020.111019

    CrossRef Google Scholar

    [27] DA SILVA T H, RIBEIRO A O, NASSAR E J, et al. Kaolinite/TiO2/cobalt(Ⅱ) tetracarboxymetall-ophthalocyanine nanocomposites as heterogeneous photocatalysts for decomposition of organic pollutants trimethoprim, caffeine and prometryn[J]. Journal of the Brazilian Chemical Society, 2019, 30(12): 2610-2623.

    Google Scholar

    [28] 程宏飞, 赵炳新, 张蒙, 等. 改性高岭石/g-C3N4复合材料光催化性能[J]. 硅酸盐学报, 2021, 49(7): 1367-1376.

    Google Scholar

    [29] SUN Z, ZHANG X, DONG X, et al. Hierarchical assembly of highly efficient visible-light-driven Ag/g-C3N4/kaolinite composite photocatalyst for the degradation of ibuprofen[J]. Journal of Materiomics, 2020, 6(3): 582-592. doi: 10.1016/j.jmat.2020.04.008

    CrossRef Google Scholar

    [30] CAO Z, JIA Y, WANG Q, et al. High-efficiency photo-Fenton Fe/g-C3N4/kaolinite catalyst for tetracycline hydrochloride degradation[J]. Applied Clay Science, 2021, 212: 106213. doi: 10.1016/j.clay.2021.106213

    CrossRef Google Scholar

    [31] MISRA A J, DAS S, HABEEB RAHMAN A P, et al. Doped ZnO nanoparticles impregnated on Kaolinite (Clay): a reusable nanocomposite for photocatalytic disinfection of multidrug resistant Enterobacter sp. under visible light[J]. J Colloid Interface Sci, 2018, 530: 610-623. doi: 10.1016/j.jcis.2018.07.020

    CrossRef Google Scholar

    [32] UGWUJA C G, ADELOWO O O, OGUNLAJA A, et al. Visible-light- mediated photodynamic water disinfection @ bimetallic-doped hybrid clay nanocomposites[J]. Acs Applied Materials & Interfaces, 2019, 11(28): 25483-25494.

    Google Scholar

    [33] 程港莉, 胡佩伟, 张炎, 等. 黑色TiO2/高岭石光催化剂的制备及其降解动力学研究[J]. 矿产保护与利用, 2021, 41(3): 166-172.

    Google Scholar

    [34] 徐杰, 郑建东, 张丽惠, 等. 巯基改性高岭土负载CeO2-CdS光催化降解结晶紫[J]. 环境科学研究, 2018, 31(6): 1144-1151.

    Google Scholar

    [35] 牛凤兴, 陈钰, 张雪梅. 高岭土-Cu2O光催化降解对苯二酚的研究[J]. 当代化工, 2019, 48(11): 2502-2504+2508. doi: 10.3969/j.issn.1671-0460.2019.11.014

    CrossRef Google Scholar

    [36] 杨权成, 张开永, 唐海香, 等. BiOCl/煤系高岭土复合材料制备及光催化性能研究[J]. 非金属矿, 2021, 44(3): 64-67. doi: 10.3969/j.issn.1000-8098.2021.03.016

    CrossRef Google Scholar

    [37] KOHANTORABI M, HOSSEINIFARD M, KAZEMZADEH A. Catalytic activity of a magnetic Fe2O3@CoFe2O4 nanocomposite in peroxymonosulfate activation for norfloxacin removal[J]. New Journal of Chemistry, 2020, 44(10): 4185-4198. doi: 10.1039/C9NJ04379A

    CrossRef Google Scholar

    [38] LI N, LI T, LIU H, et al. A novel approach to synthesize in-situ crystallized zeolite/kaolin composites with high zeolite content[J]. Applied Clay Science, 2017, 144: 150-156. doi: 10.1016/j.clay.2017.05.010

    CrossRef Google Scholar

    [39] 王文凯, 谭涓, 王诗涵, 等. 高硅铝比小晶粒NaY分子筛/高岭土复合物的合成及其催化裂化性能[J]. 硅酸盐通报, 2021, 40(10): 3479-3489.

    Google Scholar

    [40] GANDHI D, BANDYOPADHYAY R, SONI B. Zeolite Y from kaolin clay of Kachchh, India: Synthesis, characterization and catalytic application[J]. Journal of the Indian Chemical Society, 2021, 98(12): 100246. doi: 10.1016/j.jics.2021.100246

    CrossRef Google Scholar

    [41] ABDOULAYE DAN MAKAOU O, GUEU S, GOUROUZA M, et al. Development of semi-synthetic catalyst based on clay and their use in catalytic cracking of petroleum residue[J]. Applied Petrochemical Research, 2021, 11(2): 147-154. doi: 10.1007/s13203-021-00268-w

    CrossRef Google Scholar

    [42] ASGHARI A, KHORRAMI M K, KAZEMI S H. Hierarchical H-ZSM5 zeolites based on natural kaolinite as a high-performance catalyst for methanol to aromatic hydrocarbons conversion[J]. Sci Rep, 2019, 9(1): 17526. doi: 10.1038/s41598-019-54089-y

    CrossRef Google Scholar

    [43] SHEN B, WANG P, YI Z, et al. Synthesis of zeolite beta from Kaolin and its catalytic performance for FCC naphtha aromatization[J]. Energy & Fuels, 2009, 23(1/2): 60-64.

    Google Scholar

    [44] KIM O K, VOLKOVA L D, ZAKARINA N A, et al. Vacuum gas-oil cracking catalysts based on Fe-modified kaolinites with and without zeolites[J]. Chemistry and Technology of Fuels and Oils, 2019, 55(4): 378-388. doi: 10.1007/s10553-019-01042-4

    CrossRef Google Scholar

    [45] DOYLE A M, ALBAYATI T M, ABBAS A S, et al. Biodiesel production by esterification of oleic acid over zeolite Y prepared from kaolin[J]. Renewable Energy, 2016, 97: 19-23. doi: 10.1016/j.renene.2016.05.067

    CrossRef Google Scholar

    [46] WANG H, LIN H, ZHENG Y, et al. Kaolin-based catalyst as a triglyceride FCC upgrading catalyst with high deoxygenation, mild cracking, and low dehydrogenation performances[J]. Catalysis Today, 2019, 319: 164-171. doi: 10.1016/j.cattod.2018.04.055

    CrossRef Google Scholar

    [47] GHRIB Y, FRINI-SRASRA N, SRASRA E, et al. Synthesis of cocrystallized USY/ZSM-5 zeolites from kaolin and its use as fluid catalytic cracking catalysts[J]. Catalysis Science & Technology, 2018, 8(3): 716-725.

    Google Scholar

    [48] 熊晓云, 朱夔, 高雄厚, 等. 预处理法制备原位晶化高结晶度NaY/高岭土复合微球[J]. 石油化工, 2021, 50(6): 511-516. doi: 10.3969/j.issn.1000-8144.2021.06.001

    CrossRef Google Scholar

    [49] 刘现玉, 袁程远, 高雄厚, 等. 拟薄水铝石@高岭土复合材料的合成及其在FCC催化剂中的应用[J]. 石油化工, 2020, 49(3): 219-223. doi: 10.3969/j.issn.1000-8144.2020.03.003

    CrossRef Google Scholar

    [50] 李雪礼, 袁程远, 王启飞, 等. 抗铁污染催化裂化催化剂的制备及性能评价[J]. 石油炼制与化工, 2020, 51(6): 42-46. doi: 10.3969/j.issn.1005-2399.2020.06.012

    CrossRef Google Scholar

    [51] 李忠, 刘勇文. 高岭土对流化催化裂化(FCC)催化剂性能的影响[J]. 无机盐工业, 2017, 49(8): 81-84.

    Google Scholar

    [52] 田爱珍, 宗鹏, 孟凡芳, 等. 低成本原位晶化型催化裂化催化剂的制备及性能研究[J]. 炼油技术与工程, 2019, 49(12): 49-53. doi: 10.3969/j.issn.1002-106X.2019.12.012

    CrossRef Google Scholar

    [53] WANG J, WANG S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059

    CrossRef Google Scholar

    [54] DONG X, REN B, SUN Z, et al. Monodispersed CuFe2O4 nanoparticles anchored on natural kaolinite as highly efficient peroxymonosulfate catalyst for bisphenol A degradation[J]. Applied Catalysis B: Environmental, 2019, 253: 206-217. doi: 10.1016/j.apcatb.2019.04.052

    CrossRef Google Scholar

    [55] LIU L, LI Y, PANG Y, et al. Activation of peroxymonosulfate with CuCO2O4@kaolin for the efficient degradation of phenacetin[J]. Chemical Engineering Journal, 2020, 401: 126014. doi: 10.1016/j.cej.2020.126014

    CrossRef Google Scholar

    [56] 张祥伟, 李春全, 郑水林, 等. 热还原法制备g-C3N4/高岭石复合材料及其光/过硫酸盐协同催化性能[J]. 硅酸盐学报, 2021, 49(7): 1337-1346.

    Google Scholar

    [57] ZHANG X, LIU Y, LI C, et al. Fast and lasting electron transfer between γ-FeOOH and g-C3N4/kaolinite containing N vacancies for enhanced visible-light-assisted peroxymonosulfate activation[J]. Chemical Engineering Journal, 2022, 429: 132374. doi: 10.1016/j.cej.2021.132374

    CrossRef Google Scholar

    [58] GAO Y, ZHANG Z, LI S, et al. Insights into the mechanism of heterogeneous activation of persulfate with a clay/iron-based catalyst under visible LED light irradiation[J]. Applied Catalysis B: Environmental, 2016, 185: 22-30. doi: 10.1016/j.apcatb.2015.12.002

    CrossRef Google Scholar

    [59] 张宇. CF/K-PMS双效催化体系耦合膜工艺处理含盐有机废水的研究[D]. 呼和浩特: 内蒙古大学, 2021.

    Google Scholar

    [60] KULAKSIZ E, KAYAN B, GOZMEN B, et al. Comparative degradation of 5-fluorouracil in aqueous solution by using H2O2-modified subcritical water, photocatalytic oxidation and electro-Fenton processes[J]. Environmental Research, 2022, 204: 111898. doi: 10.1016/j.envres.2021.111898

    CrossRef Google Scholar

    [61] GUO S, ZHANG G, WANG J. Photo-Fenton degradation of rhodamine B using Fe2O3-Kaolin as heterogeneous catalyst: characterization, process optimization and mechanism[J]. Journal of Colloid and Interface Science, 2014, 433: 1-8. doi: 10.1016/j.jcis.2014.07.017

    CrossRef Google Scholar

    [62] ZHAO Q, LIU X, SUN M, et al. Natural kaolin derived stable SBA-15 as a support for Fe/BiOCl: a novel and efficient Fenton-like catalyst for the degradation of 2-nitrophenol[J]. RSC Advances, 2015, 5(46): 36948-36956. doi: 10.1039/C5RA01804H

    CrossRef Google Scholar

    [63] WU Y, YAO H, KHAN S, et al. Characteristics and Mechanisms of Kaolinite-Supported Zero-Valent Iron/H2O2 System for Nitrobenzene Degradation[J]. CLEAN - Soil, Air, Water, 2017, 45(3): 1600826. doi: 10.1002/clen.201600826

    CrossRef Google Scholar

    [64] ZHAI S, ZHENG Q, GE M Q. Nanosized mesoporous iron manganese bimetal oxides anchored on natural kaolinite as highly efficient hydrogen peroxide catalyst for polyvinyl alcohol degradation[J]. Journal of Molecular Liquids, 2021, 337: 116611. doi: 10.1016/j.molliq.2021.116611

    CrossRef Google Scholar

    [65] XIAO C, LI S, YI F, et al. Enhancement of photo-Fenton catalytic activity with the assistance of oxalic acid on the kaolin-FeOOH system for the degradation of organic dyes[J]. RSC Advances, 2020, 10(32): 18704-18714. doi: 10.1039/D0RA03361H

    CrossRef Google Scholar

    [66] KOSCO J, BIDWELL M, CHA H, et al. Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles[J]. Nature Materials, 2020, 19(5): 559-565. doi: 10.1038/s41563-019-0591-1

    CrossRef Google Scholar

    [67] ZHAO G, RUI K, DOU S X, et al. Heterostructures for electrochemical hydrogen evolution reaction: a review[J]. Advanced Functional Materials, 2018, 28(43): 1803291. doi: 10.1002/adfm.201803291

    CrossRef Google Scholar

    [68] LIN S, XU H, WANG Y, et al. Directly predicting limiting potentials from easily obtainable physical properties of graphene-supported single-atom electrocatalysts by machine learning[J]. Journal of Materials Chemistry A, 2020, 8(11): 5663-5670. doi: 10.1039/C9TA13404B

    CrossRef Google Scholar

    [69] PENG K, WAN P, WANG H, et al. Unraveling the morphology effect of kandite supporting MoS2 nanosheets for enhancing electrocatalytic hydrogen evolution[J]. Applied Clay Science, 2021, 212: 106211. doi: 10.1016/j.clay.2021.106211

    CrossRef Google Scholar

    [70] DEDZO G K, YAMBOU E P, SAHEU M R T, et al. Hydrogen evolution reaction at PdNPs decorated 1 : 1 clay minerals and application to the electrocatalytic determination of p-nitrophenol[J]. Journal of Electroanalytical Chemistry, 2017, 801: 49-56. doi: 10.1016/j.jelechem.2017.07.030

    CrossRef Google Scholar

    [71] SONG B, WANG Z Y, LI J F, et al. Preparation and electrocatalytic properties of kaolin/steel slag particle electrodes[J]. Catalysis Communications, 2021, 148: 106177. doi: 10.1016/j.catcom.2020.106177

    CrossRef Google Scholar

    [72] ÖZCAN A, ATILIR ÖZCAN A, DEMIRCI Y, et al. Preparation of Fe2O3 modified kaolin and application in heterogeneous electro-catalytic oxidation of enoxacin[J]. Applied Catalysis B: Environmental, 2017, 200: 361-371. doi: 10.1016/j.apcatb.2016.07.018

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(3)

Article Metrics

Article views(1830) PDF downloads(17) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint