Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2021 Vol. 41, No. 6
Article Contents

LI Aimin. Research Progress in Flotation Separation of Quartz and Feldspar in China[J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 27-34. doi: 10.13779/j.cnki.issn1001-0076.2021.06.004
Citation: LI Aimin. Research Progress in Flotation Separation of Quartz and Feldspar in China[J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 27-34. doi: 10.13779/j.cnki.issn1001-0076.2021.06.004

Research Progress in Flotation Separation of Quartz and Feldspar in China

  • Quartz is often symbiotic with feldspar silicate minerals, which is difficult to separate and purify because of their similar physical and chemical properties. Flotation is the most effective method for the separation of quartz and feldspar. The main flotation methods for the separation of quartz and feldspar, such as hydrofluoric acid method, fluoride-free acid method and fluoride-free acid method, are reviewed in detail. It is pointed out that fluoride-free acid method and pretreatment enhanced flotation will be the key direction of technological development in the future. In pharmaceutical research, the current focus is on the design and development of combined cationic and anion collectors, inhibitors, metal ion activation and so on, but the mechanism research is less.

  • 加载中
  • [1] 彭寿, 陈志强. 我国硅质原料产业现状及发展趋势[J]. 国外建材科技, 2008(2): 40-46. doi: 10.3963/j.issn.1674-6066.2008.02.012

    CrossRef Google Scholar

    [2] 丁亚卓. 低品位石英矿提纯制备高纯度石英的研究[D]. 沈阳: 东北大学, 2010: 164.

    Google Scholar

    [3] 王云月, 邓宇峰, 詹建华, 等. 高纯石英原料特征和矿床成因研究现状综述[J]. 地质论评, 2021, 67(5): 1465-1477.

    Google Scholar

    [4] 王九一. 全球高纯石英原料矿的资源分布与开发现状[J]. 岩石矿物学杂志, 2021, 40(1): 131-141. doi: 10.3969/j.issn.1000-6524.2021.01.012

    CrossRef Google Scholar

    [5] 玻璃工业的发展及其对硅质原料的需求[J]. 中国建材, 2006(1): 40-41.

    Google Scholar

    [6] 胡廷海. 北海高岭土伴生石英砂矿选矿试验研究[D]. 武汉: 武汉理工大学, 2013.

    Google Scholar

    [7] VATALIS K I, CHARALAMBIDES G, BENETIS N P. Market of high purity quartz innovative applications[J]. Procedia Economics and Finance, 2015, 24: 734-742. doi: 10.1016/S2212-5671(15)00688-7

    CrossRef Google Scholar

    [8] MüLLER A, KOCH-MüLLER M. Hydrogen Speciation and Trace Element Contents of Igneous, Hydrothermal and Metamorphic Quartz from Norway[J]. Mineralogical Magazine, 2009, 73(4): 569-583. doi: 10.1180/minmag.2009.073.4.569

    CrossRef Google Scholar

    [9] 韩宪景. 超高纯石英砂深加工生产[J]. 国外金属矿选矿, 1998(7): 31-32.

    Google Scholar

    [10] 钟乐乐. 超高纯石英纯化制备及机理研究[D]. 武汉: 武汉理工大学, 2015: 267.

    Google Scholar

    [11] 张洪武. 石英矿中Al/Fe/气液包裹体强化去除制备高纯石英砂试验研究[D]. 昆明: 昆明理工大学, 2021.

    Google Scholar

    [12] 郝文俊, 冯书文, 詹建华, 等. 全球高纯石英资源现状、生产、消费及贸易格局[J]. 中国非金属矿工业导刊, 2020(5): 15-19. doi: 10.3969/j.issn.1007-9386.2020.05.005

    CrossRef Google Scholar

    [13] 张继勇. 强硬翅膀方能远走高飞[N]. 中国矿业报, 2021: 07-09.

    Google Scholar

    [14] 陈军元, 刘艳飞, 颜玲亚, 等. 石墨、萤石等战略非金属矿产发展趋势研究[J]. 地球学报, 2021, 42(2): 287-296.

    Google Scholar

    [15] 颜玲亚, 刘艳飞, 于海军, 等. 中国高纯石英资源开发利用现状及供需形势[J]. 国土资源情报, 2020(10): 98-103. doi: 10.3969/j.issn.1674-3709.2020.10.017

    CrossRef Google Scholar

    [16] GÖTZE J. Chemistry, Textures and Physical Properties of Quartz — Geological Interpretation and Technical Application[J]. Mineralogical Magazine, 2009, 73(4): 645-671. doi: 10.1180/minmag.2009.073.4.645

    CrossRef Google Scholar

    [17] 杨晓勇, 孙超, 曹荆亚, 等. 高纯石英的研究进展及发展趋势[J]. 地学前缘: 1-14.

    Google Scholar

    [18] 郭文达, 韩跃新, 朱一民, 等. 高纯石英砂资源及加工技术分析[J]. 金属矿山, 2019(2): 22-28.

    Google Scholar

    [19] 马超, 冯安生, 刘长淼, 等. 高纯石英原料矿物学特征与加工技术进展[J]. 矿产保护与利用, 2019, 39(6): 48-57.

    Google Scholar

    [20] HUANG H, LI J, LI X, ET AL. Iron removal from extremely fine quartz and its kinetics[J]. Separation and Purification Technology, 2013, 108: 45-50. doi: 10.1016/j.seppur.2013.01.046

    CrossRef Google Scholar

    [21] MOWLA D, KARIMI G, OSTADNEZHAD K. Removal of hematite from silica sand ore by reverse flotation technique[J]. Separation and Purification Technology, 2008, 58(3): 419-423. doi: 10.1016/j.seppur.2007.08.023

    CrossRef Google Scholar

    [22] ZHANG Z, LI J, LI X, ET AL. High efficiency iron removal from quartz sand using phosphoric acid[J]. International Journal of Mineral Processing, 2012, 114/5/116/117: 30-34.

    Google Scholar

    [23] ZHANG Y, HU Y, SUN N, ET AL. Systematic review of feldspar beneficiation and its comprehensive application[J]. Minerals Engineering, 2018, 128: 141-152. doi: 10.1016/j.mineng.2018.08.043

    CrossRef Google Scholar

    [24] 田金星. 高纯石英砂的提纯工艺研究[J]. 中国矿业, 1999(3): 59-62.

    Google Scholar

    [25] 贾木欣, 孙传尧. 几种硅酸盐矿物零电点、可浮性及键价分析[J]. 有色金属(选矿部分), 2001(6): 1-9. doi: 10.3969/j.issn.1671-9492.2001.06.001

    CrossRef Google Scholar

    [26] LARSEN E, KLEIV R A. Flotation of quartz from quartz-feldspar mixtures by the HF method[J]. Minerals Engineering, 2016, 98: 49-51. doi: 10.1016/j.mineng.2016.07.021

    CrossRef Google Scholar

    [27] BUCKENHAM M, ROGERS J. Flotation of quartz and feldspar by dodecylamine[J]. Transactions of Institute of Mining and Metallurgy, 1954(64): 1-30.

    Google Scholar

    [28] SMITH R, SMOLIK T. Infrared and X-ray diffraction study of the activation of beryl and feldspars by fluorides in cationic collector systems[J]. Trans. Soc. Min. Eng, 1965(232): 196-204.

    Google Scholar

    [29] PERRY D L, TSAO L, GAUGLER K A. Surface study of HF and HF-H2SO4-treated feldspar using auger electron spectroscopy[J]. Geochim Cosmochim Ac, 1983(47): 1289-1291.

    Google Scholar

    [30] 戴强, 唐甲莹, 程正柄. 石英-长石浮选分离的进展[J]. 非金属矿, 1996(2): 16-18.

    Google Scholar

    [31] 印万忠, 孙传尧. 硅酸盐矿物浮选原理研究现状[J]. 矿产保护与利用, 2001(3): 17-22. doi: 10.3969/j.issn.1001-0076.2001.03.005

    CrossRef Google Scholar

    [32] WANG L, SUN W, HU Y, ET AL. Adsorption mechanism of mixed anionic/cationic collectors in muscovite—quartz flotation system[J]. Minerals Engineering, 2014, 64: 44-50. doi: 10.1016/j.mineng.2014.03.021

    CrossRef Google Scholar

    [33] VIEIRA A M, PERES A E C. The effect of amine type, pH, and size range in the flotation of quartz[J]. Minerals Engineering, 2007, 20(10): 1008-1013. doi: 10.1016/j.mineng.2007.03.013

    CrossRef Google Scholar

    [34] WANG L, LIU R, HU Y, ET AL. Adsorption behavior of mixed cationic/anionic surfactants and their depression mechanism on the flotation of quartz[J]. Powder Technology, 2016, 302: 15-20. doi: 10.1016/j.powtec.2016.08.043

    CrossRef Google Scholar

    [35] 黄杰. 煅烧对石英浮选提纯的影响研究[D]. 沈阳: 东北大学, 2014.

    Google Scholar

    [36] 杨伟刚. 云南广南县粉石英提纯研究[D]. 北京: 中国地质大学(北京), 2010.

    Google Scholar

    [37] 牛福生, 倪文. 高纯石英砂选矿提纯试验研究[J]. 中国矿业, 2004(6): 59-61.

    Google Scholar

    [38] 刘思, 高惠民, 胡廷海, 等. 北海某高岭土尾矿中石英砂的选矿提纯试验[J]. 金属矿山, 2013(6): 161-164. doi: 10.3969/j.issn.1001-1250.2013.06.044

    CrossRef Google Scholar

    [39] 钟森林, 谢宝华, 袁祥奕, 等. 东南亚某石英砂矿选矿试验研究[J]. 中国矿业, 2019, 28(S1): 259-262.

    Google Scholar

    [40] GURPINAR G, SONMEZ E, BOZKURT V. Effect of ultrasonic treatment on flotation of calcite, barite and quartz[J]. Mineral Processing and Extractive Metallurgy, 2004, 113: 91-95. doi: 10.1179/037195504225005796

    CrossRef Google Scholar

    [41] GUO W, ZHU Y, HAN Y, ET AL. Flotation performance and adsorption mechanism of a new collector 2-(carbamoylamino) lauric acid on quartz surface[J]. Minerals Engineering, 2020, 153: 106343. doi: 10.1016/j.mineng.2020.106343

    CrossRef Google Scholar

    [42] LI S, GAO L, WANG J, ET AL. Polyethylene oxide assisted separation of molybdenite from quartz by flotation[J]. Minerals Engineering, 2021, 162: 106765. doi: 10.1016/j.mineng.2020.106765

    CrossRef Google Scholar

    [43] MOWLA D, KARIMI G, OSTADNEZHAD K. Removal of hematite from silica sand ore by reverse flotation technique[J]. Separation and Purification Technology, 2008, 58(3): 419-423. doi: 10.1016/j.seppur.2007.08.023

    CrossRef Google Scholar

    [44] 于福顺, 邵怀志, 蒋曼, 等. 长石石英浮选分离试验及混合捕收剂作用机理研究[J]. 矿业研究与开发, 2020, 40(12): 122-127.

    Google Scholar

    [45] 闫勇, 赵长峰, 黎德玲, 等. 石英与钠长石浮选分离的研究[J]. 矿物学报, 2009, 29(2): 196-200. doi: 10.3321/j.issn:1000-4734.2009.02.010

    CrossRef Google Scholar

    [46] 汪敏, 钱明川, 史小敏, 等. 石英与长石在酸性介质中的浮选分离研究[J]. 安徽工业大学学报(自然科学版), 2015, 32(2): 123-126. doi: 10.3969/j.issn.1671-7872.2015.02.006

    CrossRef Google Scholar

    [47] 吴福初, 刘子帅. 从广西某钨锡尾矿中回收长石与石英[J]. 矿业研究与开发, 2016, 36(7): 18-21.

    Google Scholar

    [48] 张杰, 王维清, 董发勤, 等. 锂辉石浮选尾矿中长石和石英浮选分离[J]. 非金属矿, 2013, 36(3): 26-28. doi: 10.3969/j.issn.1000-8098.2013.03.011

    CrossRef Google Scholar

    [49] 雷绍民, 裴振宇, 钟乐乐, 等. 脉石英砂无氟反浮选热压浸出技术与机理研究[J]. 非金属矿, 2014, 37(2): 40-43.

    Google Scholar

    [50] 韩增辉, 周琼波, 吴云英, 等. 季铵捕收剂对石英的浮选性能研究[J]. 化工矿物与加工, 2020, 49(11): 9-11.

    Google Scholar

    [51] 魏梦楠. 石英及长石-石英系统的浮选行为和捕收剂吸附机理[D]. 合肥: 中国科学技术大学, 2019.

    Google Scholar

    [52] 郑翠红, 汪敏, 钱明川, 等. 石英与长石在中性介质中的浮选分离研究[J]. 非金属矿, 2015, 38(4): 49-51. doi: 10.3969/j.issn.1000-8098.2015.04.016

    CrossRef Google Scholar

    [53] VIDYADHAR A, HANUMANTHA RAO K. Adsorption mechanism of mixed cationic/anionic collectors in feldspar-quartz flotation system[J]. Journal of Colloid and Interface Science, 2007, 306(2): 195-204. doi: 10.1016/j.jcis.2006.10.047

    CrossRef Google Scholar

    [54] VIDYADHAR A, HANUMANTHA RAO K, FORSSBERG K S E. Separation of feldspar from quartz: mechanism of mixed cationic/anionic collector adsorption on minerals and flotation selectivity[J]. Mining, Metallurgy & Exploration, 2002, 19(3): 128-136.

    Google Scholar

    [55] É奥K. H., 孙宝歧. 阴/阳离子混合捕收剂的溶液化学及长石与石英的浮选分离[J]. 国外金属矿选矿, 1994(10): 36-45.

    Google Scholar

    [56] J S, K N, T K. Separation of feldspar from quartz by a new flotation process[J]. World Mining and Metals Technology, 1976: 428-438.

    Google Scholar

    [57] 王杨, 陈留慧. 某金矿尾矿提纯石英应用对比试验研究[J]. 矿产综合利用, 2021(2): 159-162. doi: 10.3969/j.issn.1000-6532.2021.02.027

    CrossRef Google Scholar

    [58] 董宏. 尾矿中长石—石英的提取及选矿废水的回用[D]. 长沙: 湖南农业大学, 2016.

    Google Scholar

    [59] 周亢. 提高石英浮选提纯效果的研究[D]. 广州: 华南理工大学, 2013: 75.

    Google Scholar

    [60] 刘宝贵. 高纯石英的提取工艺及其浮选药剂的研究[D]. 武汉: 武汉工程大学, 2017: 105.

    Google Scholar

    [61] SHEHU N, SPAZIANI E. Separation of feldspar from quartz using EDTA as modifier[J]. 1999(12): 1393-1397.

    Google Scholar

    [62] 于福家, 黄杰, 陈晓龙, 等. 某石英矿阴阳离子混合捕收剂浮选提纯研究[J]. 非金属矿, 2015, 38(5): 57-59. doi: 10.3969/j.issn.1000-8098.2015.05.018

    CrossRef Google Scholar

    [63] 刘亚川, 龚焕高, 张克仁. 六偏磷酸钠的作用机理研究[J]. 东北工学院学报, 1993(3): 231-235.

    Google Scholar

    [64] 陈琳璋. 石英与长石的浮选分离研究[D]. 长沙: 湖南工业大学, 2014.

    Google Scholar

    [65] 黎小玲. 碱土阳离子在石英与长石浮选分离中的作用[J]. 国外选矿快报, 1994(14): 12-16.

    Google Scholar

    [66] 银锐明, 陈琳璋, 侯清麟, 等. 金属镁离子活化石英浮选的机理研究[J]. 功能材料, 2013, 44(15): 2193-2196. doi: 10.3969/j.issn.1001-9731.2013.15.014

    CrossRef Google Scholar

    [67] REN L, QIU H, ZHANG Y, ET AL. Effects of alkyl ether amine and calcium ions on fine quartz flotation and its guidance for upgrading vanadium from stone coal[J]. Powder Technology, 2018, 338: 180-189. doi: 10.1016/j.powtec.2018.07.026

    CrossRef Google Scholar

    [68] 石云良, 邱冠周, 胡岳华, 等. 石英浮选中的表面化学反应[J]. 矿冶工程, 2001(3): 43-45. doi: 10.3969/j.issn.0253-6099.2001.03.013

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(3)

Article Metrics

Article views(3919) PDF downloads(218) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint