Citation: | XIAO Wei, SHAO Yanhai, WEI Jiayi, ZHANG Bohua, WU Weiming, WU Haixiang. Research Status and Prospect of Ilmenite Flotation Reagents[J]. Conservation and Utilization of Mineral Resources, 2021, 41(5): 160-167. doi: 10.13779/j.cnki.issn1001-0076.2021.05.022 |
The use of reasonable reagents in flotation process can effectively separate the increasingly poor, fine and miscellaneous ilmenite ore. Cationic, anionic and combined collectors, organic and inorganic inhibitors, metal ions and potassium permanganate activators are reviewed. Compared with the traditional collectors, the combined collectors improve the separation index of ilmenite to a certain extent due to the synergistic effect between the reagents, but the problem has not been properly solved. It is necessary to continue to strengthen the research and development and breakthrough of new reagents. The combination of anionic and cationic collectors has good development prospects. Inhibitors prevent the adsorption of collectors on gangue minerals by reducing the surface active sites of gangue minerals.Organic inhibitors and combination inhibitors show excellent sorting characteristics, and are the key research directions in the future. By increasing the number and activity of active sites on the mineral surface, the activator enhances the adsorption of the collector on the target minerals, but there is a pollution problem. The research on green and environmental friendly activator should be strengthened in order to put the activator into production as soon as possible and improve the industrial production efficiency.
[1] | 李政, 陈从喜. 全球钛资源行业发展现状[J]. 地球学报, 2021, 42(2): 245-250. |
[2] | 丁建华, 张勇, 李立兴, 等. 中国钛矿成矿地质特征与资源潜力评价[J]. 中国地质, 2020, 47(3): 627-644. |
[3] | LI X, LIN J, ZHANG D, et al. Material flow analysis of titanium dioxide and sustainable policy suggestion in China[J]. Resources Policy, 2020, 67: 101685. DOI: 10.1016/j.resourpol.2020.101685. |
[4] | ZHAI J H, WANG H B, CHEN P, et al. Recycling of iron and titanium resources from early tailings: From fundamental work to industrial application[J]. Chemosphere, 2020, 242: 125178. DOI: 10.1016/j.chemosphere.2019.125178. |
[5] | 崇霄霄, 栾文楼, 王丰翔, 等. 全球钛资源现状概述及我国钛消费趋势[J]. 矿产保护与利用, 2020, 40(2): 162-170. |
[6] | 李政, 陈从喜, 葛振华, 等. 中国钛矿资源开发利用形势探讨[J]. 国土资源情报, 2020(10): 75-80. |
[7] | 赵文迪, 章晓林, 景满, 等. 钛铁矿选别工艺进展[J]. 有色金属(选矿部分), 2020(2): 50-56. |
[8] | 邓陈雄. 基于矿物交互影响的低品位钛铁矿浮选分离基础研究[D]. 沈阳: 东北大学, 2015. |
[9] | 朱阳戈. 微细粒钛铁矿浮选理论与技术研究[D]. 长沙: 中南大学, 2012. |
[10] | 马龙秋, 杜雨生, 孟庆有, 等. 钛铁矿浮选药剂及其作用机理研究进展[J]. 金属矿山, 2018(3): 7-12. |
[11] | LIU X, XIE J G, HUANG G Y, et al. Low-temperature performance of cationic collector undecyl propyl ether amine for ilmenite flotation[J]. Minerals Engineering, 2017, 114: 50-56. doi: 10.1016/j.mineng.2017.09.005 |
[12] | 刘星, 谢建国, 黄光耀. 阳离子捕收剂浮选钛铁矿试验研究[J]. 矿冶工程, 2013, 33(5): 79-81+84. |
[13] | CHEN P, ZHAI J H, SUN W, et al. Adsorption mechanism of lead ions at ilmenite/water interface and its influence on ilmenite flotability[J]. Journal of Industrial and Engineering Chemistry, 2017, 53: 285-293. doi: 10.1016/j.jiec.2017.04.037 |
[14] | CHEN P, ZHAI J H, SUN W, et al. The activation mechanism of lead ions in the flotation of ilmenite using sodium oleate as a collector[J]. Minerals Engineering, 2017, 111: 100-107. doi: 10.1016/j.mineng.2017.06.009 |
[15] | LIU W J, ZHANG J, WANG W Q, et al. Flotation behaviors of ilmenite, titanaugite, and forsterite using sodium oleate as the collector[J]. Minerals Engineering, 2015, 72: 1-9. doi: 10.1016/j.mineng.2014.12.021 |
[16] | 王帅, 王明月, 杨佳, 等. 有机磷选冶药剂的合成与应用[J]. 矿产保护与利用, 2020, 40(2): 1-9. |
[17] | LI F X, ZHONG H, ZHAO G, et al. Adsorption of α-hydroxyoctyl phosphonic acid to ilmenite/water interface and its application in flotation[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2016, 490: 67-73. |
[18] | 冯成建, 钱鑫. 用苯乙烯膦酸浮选钛铁矿的研究[J]. 有色金属(选矿部分), 1991(1): 11-16. |
[19] | 王丽. 钛辉石对钛铁矿浮选影响研究[D]. 长沙: 中南大学, 2009. |
[20] | XU H F, ZHONG H, TANG Q, et al. A novel collector 2-ethyl-2-hexenoic hydroxamic acid: Flotation performance and adsorption mechanism to ilmenite[J]. Applied Surface Science, 2015, 353: 882-889. |
[21] | 刘明宝, 鱼博, 强旭旭, 等. 水杨羟肟酸在钛铁矿表面的吸附特性研究[J]. 表面技术, 2018, 47(4): 236-242. |
[22] | 程奇, 钟宏, 王帅, 等. 长碳链烷基羟肟酸对钛铁矿的浮选性能与机理研究[J]. 应用化工, 2016, 45(8): 1407-1411. |
[23] | 席振伟. 钛铁矿浮选捕收剂研究[D]. 长沙: 中南大学, 2009. |
[24] | TIAN J, XU L H, YANG Y H, et al. Selective flotation separation of ilmenite from titanaugite using mixed anionic/cationic collectors[J]. International Journal of Mineral Processing, 2017, 166: 102-107. |
[25] | 方帅. 攀西钛铁矿高效清洁浮选分离机制研究[D]. 绵阳: 西南科技大学, 2020. |
[26] | LUO L P, XU L H, MENG J P, et al. New insights into the mixed anionic/cationic collector adsorption on ilmenite and titanaugite: An in situ ATR-FTIR/2D-COS study[J]. Minerals Engineering, 2021, 169(1): 106946. DOI: 10.1016/j.mineng.2021.106946. |
[27] | LUO L P, WU H Q, XU LH, et al. An in situ ATR-FTIR study of mixed collectors BHA/DDA adsorption in ilmenite-titanaugite flotation system[J]. International Journal of Mining Science and Technology, 2021, 31(4): 689-697. |
[28] | YANG S Y, XU Y L, LIU C, et al. Investigations on the synergistic effect of combined NaOl/SPA collector in ilmenite flotation[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2021, 628: 127267. DOI: 10.1016/j.colsurfa.2021.127267. |
[29] | XU Y K, YUAN Z T, MENG Q Y, et al. Study on the flotation behavior and interaction mechanism of ilmenite with mixed BHA/NaOL collector[J]. Minerals Engineering, 2021, 170(3): 107034. DOI: 10.1016/j.mineng.2021.107034. |
[30] | ZHAI J H, LU X L, CHEN P, et al. A new collector scheme for strengthening ilmenite floatability in acidic pulp[J]. Journal of Materials Research and Technology, 2019, 8(5): 5053-5056. |
[31] | 朱建光, 朱玉霜, 王升鹤, 等. 利用协同效应最佳点配制钛铁矿捕收剂[J]. 有色金属(选矿部分), 2002(4): 39-41. |
[32] | 朱建光, 陈树民, 姚晓海, 等. 用新型捕收剂MOH浮选微细粒钛铁矿[J]. 有色金属(选矿部分), 2007(6): 42-45. |
[33] | 刘铭. 新型捕收剂对微细粒级钛铁矿的浮游行为及作用机理研究[D]. 长沙: 长沙矿冶研究院, 2017. |
[34] | WANG S, XIAO W, MA X, et al. Analysis of the Application Potential of Coffee Oil as an Ilmenite Flotation Collector[J]. Minerals, 2019, 9(9): 505. DOI: 10.3390/min9090505. |
[35] | 郑禹, 王维清, 从金瑶, 等. 新型捕收剂浮选辉长岩型钛铁矿试验[J]. 钢铁钒钛, 2017, 38(5): 9-14. |
[36] | 舒超, 罗惠华, 王昌良, 等. 新型捕收剂ZF-02高效环保浮选微细粒级钛铁矿[J]. 中国矿业, 2017, 26(10): 131-135. |
[37] | LIU X, HUANG G Y, LI C X, et al. Depressive effect of oxalic acid on titanaugite during ilmenite flotation[J]. Minerals Engineering, 2015, 79: 62-67. |
[38] | Omid S N, Mehdi I, Akbar M. Effect of surface dissolution by oxalic acid on flotation behavior of minerals[J]. Journal of Materials Research and Technology, 2019, 8(2): 2336-2349. |
[39] | YUAN Z T, ZHAO X, MENG Q Y, et al. Adsorption mode of sodium citrate for achieving effective flotation separation of ilmenite from titanaugite[J]. Minerals Engineering, 2021, 171(3): 107086. DOI: 10.1016/j.mineng.2021.107086. |
[40] | YUAN Z T, DU Y S, MENG Q Y, et al. Adsorption differences of carboxymethyl cellulose depressant on ilmenite and titanaugite[J]. Minerals Engineering, 2021, 166(1): 106887. DOI: 10.1016/j.mineng.2021.106887. |
[41] | 魏志聪, 徐翔, 方建军, 等. 钛铁矿和钛辉石对羧甲基纤维素的吸附机理研究[J]. 矿冶, 2011, 20(1): 8-10. |
[42] | WANG Z, XU R, WANG L. Adsorption of polystyrenesulfonate on titanaugite surface: Experiments and quantum chemical calculations[J]. Journal of Molecular Liquids, 2020, 319: 114167. DOI: 10.1016/j.molliq.2020.114167. |
[43] | QIAN Y L, WANG Z, CAO J. New depression mechanism of polymeric depressant on titanaugite in ilmenite flotation[J]. Separation and Purification Technology, 2021, 264: 118468. DOI: 10.1016/j.seppur.2021.118468. |
[44] | 邓传宏, 马军二, 张国范, 等. 水玻璃在钛铁矿浮选中的作用[J]. 中国有色金属学报, 2010, 20(3): 551-556. |
[45] | YANG Y H, XU L H, TIAN J, et al. Selective flotation of ilmenite from olivine using the acidified water glass as depressant[J]. International Journal of Mineral Processing, 2016, 157: 73-79. |
[46] | ZHU Y G, ZHANG G F, FENG Q M, et al. Effect of surface dissolution on flotation separation of fine ilmenite from titanaugite[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(5): 1149-1154. |
[47] | Parisa S P, Mehdi I, Akbar M. Modification of ilmenite surface properties by superficial dissolution method[J]. Minerals Engineering, 2016, 92: 160-167. |
[48] | LIU H, ZHAO W Q, ZHAI J H, et al. Activation Mechanism of Lead(Ⅱ) to Ilmenite Flotation Using Salicylhydroxamic Acid as Collector[J]. Minerals, 2020, 10(6): 567. DOI: 10.3390/min10060567. |
[49] | FANG S, XU L H, WU H Q, et al. Comparative studies of flotation and adsorption of Pb (Ⅱ)/benzohydroxamic acid collector complexes on ilmenite and titanaugite[J]. Powder Technology, 2019, 345: 35-42. |
[50] | ZHAO X, MENG Q Y, XU Y K, et al. New insights for improving ilmenite flotation via surface modification with lead ions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627: 127146. DOI: 10.1016/j.colsurfa.2021.127146. |
[51] | CHEN P, LU X L, CHAI X J, et al. Influence of Fe-BHA complexes on the flotation behavior of ilmenite[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2020, 612: 125964. DOI: 10.1016/j.colsurfa.2020.125964. |
[52] | LI FX, ZHONG H, WANG S, et al. The activation mechanism of Cu(Ⅱ) to ilmenite and subsequent flotation response to α-hydroxyoctyl phosphinic acid[J]. Journal of Industrial and Engineering Chemistry, 2016, 37: 123-130. |
[53] | MIAO Y C, WEN S M, FENG Q C, et al. Enhanced adsorption of salicylhydroxamic acid on ilmenite surfaces modified by Fenton and its effect on floatability[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626: 127057. DOI: 10.1016/j.colsurfa.2021.127057. |
[54] | CAI J Z, DENG J S, YANG H Y, et al. A novel activation for ilmenite using potassium permanganate and its effect on flotation response[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 604: 125323. DOI: 10.1016/j.colsurfa.2020.125323. |
[55] | CAI J Z, DENG J S, WEN S M, et al. Surface modification and flotation improvement of ilmenite by using sodium hypochlorite as oxidant and activator[J]. Journal of Materials Research and Technology, 2020, 9(3): 3368-3377. |