Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2021 Vol. 41, No. 5
Article Contents

DONG Jifa, FANG Jianjun, HE Haiyang, QIU Zhilian, KOU Qingjun. Experimental Study on Beneficiation of a High Zinc Refractory Copper-Zinc Sulfide Ore from Dongchuan County of Yunnan Province[J]. Conservation and Utilization of Mineral Resources, 2021, 41(5): 97-104. doi: 10.13779/j.cnki.issn1001-0076.2021.05.013
Citation: DONG Jifa, FANG Jianjun, HE Haiyang, QIU Zhilian, KOU Qingjun. Experimental Study on Beneficiation of a High Zinc Refractory Copper-Zinc Sulfide Ore from Dongchuan County of Yunnan Province[J]. Conservation and Utilization of Mineral Resources, 2021, 41(5): 97-104. doi: 10.13779/j.cnki.issn1001-0076.2021.05.013

Experimental Study on Beneficiation of a High Zinc Refractory Copper-Zinc Sulfide Ore from Dongchuan County of Yunnan Province

More Information
  • Corresponding author: FANG Jianjun  
  • In a copper-zinc sulfide ore in Dongchuan, Yunnan Province, the Cu grade is 0.64% and the Zn grade is 6.21%. The main gangue minerals include quartz, sericite and calcite.Most of the minerals in the ore are composed of intergrowth.The low degree of monomer dissociation is unfavorable, causing difficulty in the separation copper and zinc. The selective flotation process of zinc suppression and copper flotation is adopted for the ore. Under the condition that the grinding fineness is -0.074 mm, accounting for 80%, adjust the pH with lime, select the combination of zinc sulfate and sodium pyrosulfite to inhibit sphalerite for copper roughing, Z-200 as the collector, copper sulfate as the activator for zinc roughing, isobutyl xanthate as the collector, and adopt the process of "one roughing, one scavenging and two cleaning" for copper and zinc. Among them, the copper roughing concentrate needs to be regrinded to a fineness of -0.038 mm, accounting for 90%.The tailings of the first copper cleaning shall be scavenging. Finally, through the closed-circuit process tests, the copper concentrate with Cu grade of 27.87% and Cu recovery of 75.17% and the zinc concentrate with Zn grade of 49.23% and Zn recovery of 94.48% were obtained. The copper concentrate contains 5.41% zinc, the zinc concentrate contains 1.03% copper, and the mutual content of copper and zinc in the concentrate was low, and the separation of copper and zinc was realized.

  • 加载中
  • [1] 易晓剑. 国内外主要有色金属资源储量及其特点[J]. 世界有色金属, 2005, 4(12): 42-43.

    Google Scholar

    [2] 焦芬. 复杂铜锌硫化矿浮选分离的基础研究[D]. 长沙: 中南大学, 2013.

    Google Scholar

    [3] 李俊旺, 张红华, 洪建华. 铜锌硫化矿浮选分离研究进展[J]. 铜业工程, 2016, 4(4): 56-58.

    Google Scholar

    [4] 张渊, 刘韬, 张俊辉. 天宝山铜铅锌多金属矿矿石性质及选矿工艺研究[J]. 金属矿山, 2008(5): 70-72.

    Google Scholar

    [5] DENG JIUSHUAI, MAO YINGBO, WEN SHUMING, et al. New influence factor inducing difficulty in selective flotation separation of Cu-Zn mixed sulfide minerals[J]. International Journal of Minerals Metallurgy and Materials, 2015(2): 111-115.

    Google Scholar

    [6] CHANDRA AP, GERSON AR. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite[J]. Advances in Colloid & Interface Science, 2009(1/2): 97-100.

    Google Scholar

    [7] LIU J, WEN S, DENG J, et al. Contribution of fluid inclusions to variations in solution composition for sphalerite quartz samples from the Yunnan Province, PRC[J]. Colloids & Surfaces A : Physico chemical& Engineering Aspects, 2013(35): 287-293.

    Google Scholar

    [8] 余新阳, 王强强, 刘诚, 等. 河南某高硫难选铜锌矿选矿试验研究[J]. 有色金属工程, 2016, 6(4): 53-57.

    Google Scholar

    [9] 张磊, 戴惠新, 杜五星. 铜锌硫化矿分离工艺现状[J]. 矿产综合利用, 2019(1): 1-5.

    Google Scholar

    [10] 许时, 刘金华, 孟书青, 等. 矿石可选性研究[M]. 北京: 冶金工业出版社, 1981.

    Google Scholar

    [11] 李宁. 铜锌硫化矿浮选分离研究[C]. 长沙: 中南大学, 2012.

    Google Scholar

    [12] 尧章伟, 方建军, 代宗, 等. 闪锌矿抑制剂的作用机理及研究进展[J]. 矿冶, 2018(4): 16-21.

    Google Scholar

    [13] 王衡嵩, 魏志聪, 曾明, 等. 铜锌矿物分离中闪锌矿抑制剂的作用机理研究进展[J]. 矿产保护与利用, 2019, 39(2): 124-130.

    Google Scholar

    [14] GERSON A R, LANGE A G, PRINCE K E, et al. The mechanism of copper activation of sphalerite[J]. Appl. Surf. Sci., 1999, 137(1/4): 207-223.

    Google Scholar

    [15] PRESTIDGE C A, THIEL A G, RALSTON J, et al. The interaction of ethyl xanthate with copper(Ⅱ)-activated zinc sulphide: kinetic effects[J]. Colloids Surf., A, 1994, 85(1): 51-68.

    Google Scholar

    [16] 李佳磊, 宋凯伟, 刘殿文, 等. 闪锌矿浮选的活化与去活化研究进展[J]. 过程工程学报, 2018(1): 11-19.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(6)

Article Metrics

Article views(1156) PDF downloads(269) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint