| Citation: | YAN Wenchao, HU Falin, CAO Qinbo. Flotation Kinetics of Pyrite Under High-frequency Ultrasonic Treatment[J]. Conservation and Utilization of Mineral Resources, 2021, 41(5): 83-88. doi: 10.13779/j.cnki.issn1001-0076.2021.05.012 |
This paper studies the flotation behavior of pyrite under the action of ultrasound.The results show that under the best conditions of flotation with a grinding fineness of-0.074 mm accounting for 57%, 200 g/t butyl xanthate, and 20 g/t foaming agent, the ultrasonic frequency is 135 kHz and the power is 100 W can increase the recovery rate of pyrite by 13.86%. The results of ultrasonic flotation and standard flotation showed that the high frequency ultrasonic treatment had the greatest influence on the flotation of pyrite of -150 μm+100 μm size fraction, and the recovery was improved by 7.54%. Five kinetic models are used to fit the experimental data of this particle size. The results show that the classical first-order flotation kinetic model gave excellent fits to the experimental data, and the description of kinetic equation is ultrasonic treatment flotation: ε=26.27[1-exp(-0.601 t)], standard flotation: ε=18.01[1-exp(-0.671 t)], respectively SEM analysis showed that the recovery of pyrite was improved mainly by the cleaning of surface.
| [1] | 苏超, 申培伦, 李佳磊, 等. 黄铁矿浮选的抑制与解抑活化研究进展[J]. 化工进展, 2019, 38(4): 1921-1929. |
| [2] | 宋国君, 邓久帅, 先永骏, 等. 黄铁矿解抑活化机理研究现状及进展[J]. 矿物学报, 2017, 37(3): 328-332. |
| [3] | 吕沛超, 卢毅屏, 冯博, 等. 超声波对金川硫化镍矿浮选的作用研究[J]. 有色金属(选矿部分), 2015(4): 34-38. doi: 10.3969/j.issn.1671-9492.2015.04.009 |
| [4] | 欧阳嘉骏, 陈艺锋, 王宇菲, 等. 超声波强化铝土矿浮选脱硫研究[J]. 中国矿山工程, 2015, 44(2): 15-18. doi: 10.3969/j.issn.1672-609X.2015.02.005 |
| [5] | 康文泽, 荀海鑫, 李明明. 超声波预处理对稀缺难浮煤浮选的作用[J]. 中国矿业大学学报, 2013, 42(4): 625-630. |
| [6] | 杨丽君, 梁殿印, 韩登峰, 等. 超声波对浮选柱选钼过程中细粒尾矿再选的试验研究[J]. 有色金属(选矿部分), 2011(4): 51-55. doi: 10.3969/j.issn.1671-9492.2011.04.013 |
| [7] | OZKAN S G. Beneficiation of magnesite slimes with ultrasonic treatment[J]. Minerals Engineering, 2002, 15(1): 99-101. |
| [8] | KANG W, XUN H, KONG X, et al. Effects from changes in pulp nature after ultrasonic conditioning on high-sulfur coal flotation[J]. Mining Science and Technology (China), 2009, 19(4): 498-502+507. doi: 10.1016/S1674-5264(09)60093-4 |
| [9] | ALDRICHl C, FENG D. Effect of ultrasonic preconditioning of pulp on the flotation of sulphide ores[J]. Minerals Engineering, 1999, 12(6): 701-707. doi: 10.1016/S0892-6875(99)00053-9 |
| [10] | 缪亚兵, 邓海波, 徐轲. 萤石在油酸和水玻璃体系中的浮选动力学模型及浮选行为研究[J]. 化工矿物与加工, 2015, 44(7): 13-17. |
| [11] | 崔伟勇, 张覃, 邱跃琴, 等. 捕收剂GJBW作用下胶磷矿浮选动力学研究[J]. 化工矿物与加工, 2015, 44(1): 11-13. |
| [12] | 何丽萍. 铜铅锌硫化矿浮选动力学研究[D]. 赣州: 江西理工大学, 2008. |
| [13] | ZHANG H, LIU J, CAO Y, et al. Effects of particle size on lignite reverse flotation kinetics in the presence of sodium chloride[J]. Powder technology, 2013, 246: 658-663. doi: 10.1016/j.powtec.2013.06.033 |
| [14] | TAO D. Role of bubble size in flotation of coarse and fine particles-a review[J]. Separation Science and Technology, 2005, 39(4): 741-760. doi: 10.1081/SS-120028444 |
| [15] | YUAN X M, PALSSON B I, FORSSBERG K S E. Statistical interpretation of flotation kinetics for a complex sulphide ore[J]. Minerals Engineering, 1996, 9(4): 429-442. doi: 10.1016/0892-6875(96)00028-3 |
| [16] | VIDELA A R, MORALES R, SAINT-JEAN T, et al. Ultrasound treatment on tailings to enhance copper flotation recovery[J]. Minerals Engineering, 2016, 99: 89-95. |
The analysis results of XRD detection
Experimental flow sheet of flotation
Effect of the ultrasonic frequency on the flotation recovery of pyrite
Effect of the ultrasonic treatment on the accumulative pyrite recovery in flotation
Effect of the ultrasonic treatment on the accumulative recovery of pyrite size fractions in flotation.
Comparison of the different kinetic models fitted to the test data
Effect of the ultrasonic treatment on the Pyrite Surface