Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2021 Vol. 41, No. 5
Article Contents

HU Bo, LI Maolin, CHEN Daixiong. Study on Beneficiation Process of Sulfur-oxygen Mixed Copper-cobalt Ore in Katanga Mining Area of Congo(DRC)[J]. Conservation and Utilization of Mineral Resources, 2021, 41(5): 43-49. doi: 10.13779/j.cnki.issn1001-0076.2021.05.007
Citation: HU Bo, LI Maolin, CHEN Daixiong. Study on Beneficiation Process of Sulfur-oxygen Mixed Copper-cobalt Ore in Katanga Mining Area of Congo(DRC)[J]. Conservation and Utilization of Mineral Resources, 2021, 41(5): 43-49. doi: 10.13779/j.cnki.issn1001-0076.2021.05.007

Study on Beneficiation Process of Sulfur-oxygen Mixed Copper-cobalt Ore in Katanga Mining Area of Congo(DRC)

  • The sulfur-oxygen mixed copper cobalt ore in Katanga mining area of Congo(DRC) contains 2.21% Cu and0.16% Co, which elements have reached the industrial recovery standard.In order to determine a reasonable and efficient beneficiation process, the ore property analysis and beneficiation test research are carried out.The results show that the types of the target minerals in the sulfur-oxygen mixed type copper cobalt ore are complex.Besides copper sulfide and copper oxide, some copper occurs in the form of copper in the copper manganese aluminum silicon oxide complex.Cobalt mainly occurs in the form of cobalt bearing pyrite and hydrocobaltite.At the same time, the gangue minerals are mainly carbonate gangues which are easy to mud.Combined with the results of ore property analysis and exploration condition tests, the beneficiation process of sulphide flotation-sulfide sulfide of oxide minerals by sodium sulfide-flotation of oxide minerals with combined collector collaborative collectors and high gradient strong magnetic separation of oxide flotation tailings was determined.According to the floatability and magnetic difference of different types of target minerals, The copper sulfide concentrate, copper oxide concentrate and magnetic separation concentrate were produced in different stages.The recovery rate of total copper and cobalt of the three products reached 91.54% and 56.48%, respectively, which realized the comprehensive recovery of the main target elements of the sulfur-oxygen mixed copper cobalt ore.

  • 加载中
  • [1] AGORHOM E A, LEM J P, SKINNER W, et al. Challenges and opportunities in the recovery/rejection of trace elements in copper flotation-a review[J]. Minerals Engineering, 2015, 78: 45-57. doi: 10.1016/j.mineng.2015.04.008

    CrossRef Google Scholar

    [2] 廖乾, 冯其明, 欧乐明, 等. 某复合型铜钴矿合理选矿工艺及硫化作用机理研究[J]. 矿冶工程, 2010, 30(5): 44-48. doi: 10.3969/j.issn.0253-6099.2010.05.011

    CrossRef Google Scholar

    [3] 印万忠, 吴凯. 难选氧化铜矿选冶技术现状与展望[J]. 有色金属工程, 2013, 3(6): 66-70. doi: 10.3969/j.issn.2095-1744.2013.06.016

    CrossRef Google Scholar

    [4] BRUCKARD W J, SPARROW G J, WOODCOCK J T. A review of the effects of the grinding environment on the flotation of copper sulphides[J]. International Journal of Mineral Processing, 2011, 100(1): 1-13.

    Google Scholar

    [5] MICHEL LUTANDULA SHENGOA, MESCHAC-BILL KIMEB, MATANDA PASCAL MAMBWEC. A review of the beneficiation of coppercobalt-bearing minerals in the Democratic Republic of Congo[J]. Journal of Sustainable Mining, 2019, 18(4): 226-246 doi: 10.1016/j.jsm.2019.08.001

    CrossRef Google Scholar

    [6] LIU GUANGYI, ZHONG HONG, XIA LIUYIN et al. Improving copper flotation recovery from a refractory copper porphyry ore by using ethoxycarbonyl thiourea as a collector[J]. Minerals Engineering, 2011, 24(8): 817-824. doi: 10.1016/j.mineng.2011.01.009

    CrossRef Google Scholar

    [7] 刘方华. 国外某沉积岩型难选硫氧混合铜矿石浮选试验[J]. 金属矿山, 2019, 48(11): 73-78.

    Google Scholar

    [8] 张世民, 叶国华, 张爽, 等. 云南某低品位硫氧混合型铜矿浮选试验研究[J]. 矿产综合利用, 2016, 17(3): 40-43. doi: 10.3969/j.issn.1000-6532.2016.03.010

    CrossRef Google Scholar

    [9] LEE K, ARCHIBALD D, MCLEAN J, et al. Flotation of mixed copper oxide and sulphide minerals with xanthate and hydroxamate collectors[J]. Minerals Engineering, 2009, 22(4): 395-401. doi: 10.1016/j.mineng.2008.11.005

    CrossRef Google Scholar

    [10] KONGOLO K, KIPOKA M, MINANGA K, et al. Improving the efficiency of oxide copper-cobalt ores flotation by combination of sulphidisers[J]. Minerals Engineering, 2003, 16(10): 1023-1026. doi: 10.1016/S0892-6875(03)00263-2

    CrossRef Google Scholar

    [11] ZHAN-FANG C, HONG Z, GUANG-YI L, et al. Techniques of copper recovery from Mexican copper oxide ore[J]. Mining science & amp; Technology, 2009, 27(1): 45-48.

    Google Scholar

    [12] SOPHIE DECReE, POURRET O, BAELE J M. Rare earth element fractionation in heterogenite(CoOOH): Implication for cobalt oxidized ore in the Katanga Copperbelt(Democratic Republic of Congo)[J]. Journal of Geochemical Exploration, 2015, 159: 290-301. doi: 10.1016/j.gexplo.2015.10.005

    CrossRef Google Scholar

    [13] 惠博, 朱志敏. 四川拉拉地区天生坝铁矿中铜矿化的发现及地质意义[J]. 科学技术与工程, 2017(1): 137-141. doi: 10.3969/j.issn.1671-1815.2017.01.024

    CrossRef Google Scholar

    [14] HERRERA-URBINA R, SOTILLO F J, FUERSTENAU D W. Effect of sodium sulfide additions on the pulp potential and amyl xanthate flotation of cerussite and galena[J]. International Journal of Mineral Processing, 1999, 55(3): 157-170. doi: 10.1016/S0301-7516(98)00029-5

    CrossRef Google Scholar

    [15] NATARAJAN K A, IWASAKI I. Electrochemical aspects of grinding media-mineral interactions in magnetite ore grinding[J]. International Journal of Mineral Processing, 1984, 13(1): 53-71. doi: 10.1016/0301-7516(84)90011-5

    CrossRef Google Scholar

    [16] CASTRO S, SOTO H, GOLDFARB J. et al. Sulphidizing reactions in the flotation of oxidized copper minerals, Ⅱ. Role of the adsorption and oxidation of sodium sulphide in the flotation of chrysocolla and malachite[J]. International Journal of Mineral Processing, 1974, 1(2): 151-161. doi: 10.1016/0301-7516(74)90011-8

    CrossRef Google Scholar

    [17] CHANDER S. A brief review of pulp potentials in sulfide flotation[J]. International Journal of Mineral Processing, 2003, 72(1): 141-150.

    Google Scholar

    [18] BAI X, WEN S, FENG Q, et al. Utilization of high-gradient magneticseparation-secondary grinding-leaching to improve the copper recovery from refractory copper oxide ores[J]. Minerals Engineering, 2019, 136: 77-80. doi: 10.1016/j.mineng.2019.03.009

    CrossRef Google Scholar

    [19] 易运来. 云南某难选氧化铜矿浮—磁联合选矿试验[J]. 现代矿业, 2018, 34(9): 24-27+34.

    Google Scholar

    [20] HAN JUNWEI, XIAO JUN, QIN WENQIN, et al. Copper Recovery from Yulong Complex Copper Oxide Ore by Flotation and Magnetic Separation[J]. JOM, 2017(5): 6-11.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(5)

Article Metrics

Article views(2392) PDF downloads(144) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint