| Citation: | HU Bo, LI Maolin, CHEN Daixiong. Study on Beneficiation Process of Sulfur-oxygen Mixed Copper-cobalt Ore in Katanga Mining Area of Congo(DRC)[J]. Conservation and Utilization of Mineral Resources, 2021, 41(5): 43-49. doi: 10.13779/j.cnki.issn1001-0076.2021.05.007 | 
The sulfur-oxygen mixed copper cobalt ore in Katanga mining area of Congo(DRC) contains 2.21% Cu and0.16% Co, which elements have reached the industrial recovery standard.In order to determine a reasonable and efficient beneficiation process, the ore property analysis and beneficiation test research are carried out.The results show that the types of the target minerals in the sulfur-oxygen mixed type copper cobalt ore are complex.Besides copper sulfide and copper oxide, some copper occurs in the form of copper in the copper manganese aluminum silicon oxide complex.Cobalt mainly occurs in the form of cobalt bearing pyrite and hydrocobaltite.At the same time, the gangue minerals are mainly carbonate gangues which are easy to mud.Combined with the results of ore property analysis and exploration condition tests, the beneficiation process of sulphide flotation-sulfide sulfide of oxide minerals by sodium sulfide-flotation of oxide minerals with combined collector collaborative collectors and high gradient strong magnetic separation of oxide flotation tailings was determined.According to the floatability and magnetic difference of different types of target minerals, The copper sulfide concentrate, copper oxide concentrate and magnetic separation concentrate were produced in different stages.The recovery rate of total copper and cobalt of the three products reached 91.54% and 56.48%, respectively, which realized the comprehensive recovery of the main target elements of the sulfur-oxygen mixed copper cobalt ore.
 
		                | [1] | AGORHOM E A, LEM J P, SKINNER W, et al. Challenges and opportunities in the recovery/rejection of trace elements in copper flotation-a review[J]. Minerals Engineering, 2015, 78: 45-57. doi: 10.1016/j.mineng.2015.04.008 | 
| [2] | 廖乾, 冯其明, 欧乐明, 等. 某复合型铜钴矿合理选矿工艺及硫化作用机理研究[J]. 矿冶工程, 2010, 30(5): 44-48. doi: 10.3969/j.issn.0253-6099.2010.05.011 | 
| [3] | 印万忠, 吴凯. 难选氧化铜矿选冶技术现状与展望[J]. 有色金属工程, 2013, 3(6): 66-70. doi: 10.3969/j.issn.2095-1744.2013.06.016 | 
| [4] | BRUCKARD W J, SPARROW G J, WOODCOCK J T. A review of the effects of the grinding environment on the flotation of copper sulphides[J]. International Journal of Mineral Processing, 2011, 100(1): 1-13. | 
| [5] | MICHEL LUTANDULA SHENGOA, MESCHAC-BILL KIMEB, MATANDA PASCAL MAMBWEC. A review of the beneficiation of coppercobalt-bearing minerals in the Democratic Republic of Congo[J]. Journal of Sustainable Mining, 2019, 18(4): 226-246 doi: 10.1016/j.jsm.2019.08.001 | 
| [6] | LIU GUANGYI, ZHONG HONG, XIA LIUYIN et al. Improving copper flotation recovery from a refractory copper porphyry ore by using ethoxycarbonyl thiourea as a collector[J]. Minerals Engineering, 2011, 24(8): 817-824. doi: 10.1016/j.mineng.2011.01.009 | 
| [7] | 刘方华. 国外某沉积岩型难选硫氧混合铜矿石浮选试验[J]. 金属矿山, 2019, 48(11): 73-78. | 
| [8] | 张世民, 叶国华, 张爽, 等. 云南某低品位硫氧混合型铜矿浮选试验研究[J]. 矿产综合利用, 2016, 17(3): 40-43. doi: 10.3969/j.issn.1000-6532.2016.03.010 | 
| [9] | LEE K, ARCHIBALD D, MCLEAN J, et al. Flotation of mixed copper oxide and sulphide minerals with xanthate and hydroxamate collectors[J]. Minerals Engineering, 2009, 22(4): 395-401. doi: 10.1016/j.mineng.2008.11.005 | 
| [10] | KONGOLO K, KIPOKA M, MINANGA K, et al. Improving the efficiency of oxide copper-cobalt ores flotation by combination of sulphidisers[J]. Minerals Engineering, 2003, 16(10): 1023-1026. doi: 10.1016/S0892-6875(03)00263-2 | 
| [11] | ZHAN-FANG C, HONG Z, GUANG-YI L, et al. Techniques of copper recovery from Mexican copper oxide ore[J]. Mining science & amp; Technology, 2009, 27(1): 45-48. | 
| [12] | SOPHIE DECReE, POURRET O, BAELE J M. Rare earth element fractionation in heterogenite(CoOOH): Implication for cobalt oxidized ore in the Katanga Copperbelt(Democratic Republic of Congo)[J]. Journal of Geochemical Exploration, 2015, 159: 290-301. doi: 10.1016/j.gexplo.2015.10.005 | 
| [13] | 惠博, 朱志敏. 四川拉拉地区天生坝铁矿中铜矿化的发现及地质意义[J]. 科学技术与工程, 2017(1): 137-141. doi: 10.3969/j.issn.1671-1815.2017.01.024 | 
| [14] | HERRERA-URBINA R, SOTILLO F J, FUERSTENAU D W. Effect of sodium sulfide additions on the pulp potential and amyl xanthate flotation of cerussite and galena[J]. International Journal of Mineral Processing, 1999, 55(3): 157-170. doi: 10.1016/S0301-7516(98)00029-5 | 
| [15] | NATARAJAN K A, IWASAKI I. Electrochemical aspects of grinding media-mineral interactions in magnetite ore grinding[J]. International Journal of Mineral Processing, 1984, 13(1): 53-71. doi: 10.1016/0301-7516(84)90011-5 | 
| [16] | CASTRO S, SOTO H, GOLDFARB J. et al. Sulphidizing reactions in the flotation of oxidized copper minerals, Ⅱ. Role of the adsorption and oxidation of sodium sulphide in the flotation of chrysocolla and malachite[J]. International Journal of Mineral Processing, 1974, 1(2): 151-161. doi: 10.1016/0301-7516(74)90011-8 | 
| [17] | CHANDER S. A brief review of pulp potentials in sulfide flotation[J]. International Journal of Mineral Processing, 2003, 72(1): 141-150. | 
| [18] | BAI X, WEN S, FENG Q, et al. Utilization of high-gradient magneticseparation-secondary grinding-leaching to improve the copper recovery from refractory copper oxide ores[J]. Minerals Engineering, 2019, 136: 77-80. doi: 10.1016/j.mineng.2019.03.009 | 
| [19] | 易运来. 云南某难选氧化铜矿浮—磁联合选矿试验[J]. 现代矿业, 2018, 34(9): 24-27+34. | 
| [20] | HAN JUNWEI, XIAO JUN, QIN WENQIN, et al. Copper Recovery from Yulong Complex Copper Oxide Ore by Flotation and Magnetic Separation[J]. JOM, 2017(5): 6-11. | 
 
			            
			            
			            
			        Proposed process flow chart of mineral processing principle
Effect of grinding fineness on flotation index of copper sulfide
Effect of sodium sulfide dosage on flotation index of copper cobalt oxide
Effect of collector types on flotation indexes of copper oxide
Micro morphology of copper oxide flotation tailings: Malachite (mal), azurite (AZ) irregularly wrapped copper manganese aluminum silicon oxide complex
Influence of magnetic field intensity on magnetic separation effect
Flow chart of recommended process