Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2021 Vol. 41, No. 3
Article Contents

LIU Zhichao, LI Chunfeng, JIA Xiumin, LI Guang, QIANG Lude, MA Jia, WU Cuilian, TANG Baobin. Study on Comprehensive Recovery Technology of Hua Yangchuan Low Grade U-Nb-Pb Polymetallic Ore[J]. Conservation and Utilization of Mineral Resources, 2021, 41(3): 132-137. doi: 10.13779/j.cnki.issn1001-0076.2021.03.019
Citation: LIU Zhichao, LI Chunfeng, JIA Xiumin, LI Guang, QIANG Lude, MA Jia, WU Cuilian, TANG Baobin. Study on Comprehensive Recovery Technology of Hua Yangchuan Low Grade U-Nb-Pb Polymetallic Ore[J]. Conservation and Utilization of Mineral Resources, 2021, 41(3): 132-137. doi: 10.13779/j.cnki.issn1001-0076.2021.03.019

Study on Comprehensive Recovery Technology of Hua Yangchuan Low Grade U-Nb-Pb Polymetallic Ore

More Information
  • For the Hua Yangchuan low-grade uranium niobium lead polymetallic ore, the valuable metals in the ore were preconcentrated by gravity separation, and the slime of ore was reduced by prescreening and stage grinding, which could improve the gravity separation recovery rate of valuable metals. Then the associated galena and magnetite were recovered from the gravity concentrate, and the lead concentrate and iron concentrate with qualified radioactivity and grade were obtained, which realized the comprehensive recovery of associated metals. Finally, benzohydroxamic acid was used as a collector to directly flotation betafite, and the uranium-niobium concentrate with high recovery and high grade was obtained. The final indicators were obtained with the lead concentrate yield of 0.67%, lead grade of 57.85%, lead recovery of 69.48%; iron concentrate yield of 3.05%, iron grade of 64.50%, iron recovery of 65.87%; uranium niobium concentrate yield of 1.76%, uranium grade of 0.702%, uranium recovery of 77.89%, niobium grade of 0.695%, niobium recovery of 72.55%.

  • 加载中
  • [1] 洪斌跃, 彭瑞强, 魏星星, 等. 华阳川铀多金属矿床铀成矿地质特征[J]. 四川地质学报, 2018(1): 97-100. doi: 10.3969/j.issn.1006-0995.2018.01.021

    CrossRef Google Scholar

    [2] 高成, 康清清, 江宏君, 等. 秦岭造山带发现新型铀多金属矿: 华阳川与伟晶岩脉和碳酸岩脉有关的超大型铀-铌-铅-稀土矿床[J]. 地球化学, 2017(5): 446-455. doi: 10.3969/j.issn.0379-1726.2017.05.004

    CrossRef Google Scholar

    [3] 孟广寿, 赵满常, 李文霞, 等. 低品位含铀铌钛矿选矿和综合利用的工艺研究[J]. 铀矿冶, 1982(3): 11-17.

    Google Scholar

    [4] 黄美媛. 某低品位铀铌铅矿综合利用试验[J]. 矿产保护与利用, 2006(4): 34-36. doi: 10.3969/j.issn.1001-0076.2006.04.008

    CrossRef Google Scholar

    [5] 惠小朝, 何升. 陕西华阳川铀、铌、铅多金属矿石工艺矿物学研究[J]. 金属矿山, 2016(5): 85-90. doi: 10.3969/j.issn.1001-1250.2016.05.019

    CrossRef Google Scholar

    [6] 康清清, 江宏君, 李鹏, 等. 陕西华阳川铀铌铅矿床矿石矿物学特征[J]. 东华理工大学学报: 自然科学版, 2018(2): 111-123. doi: 10.3969/j.issn.1674-3504.2018.02.002

    CrossRef Google Scholar

    [7] 武翠莲, 刘志超, 马嘉, 等. 华阳川多金属矿床中铀的赋存状态研究[J]. 铀矿冶, 2015(1): 30-34.

    Google Scholar

    [8] 王守敬. 华阳川铀多金属矿工艺矿物学研究[J]. 金属矿山, 2019(4): 116-120.

    Google Scholar

    [9] 高玉德, 邱显扬, 冯其明. 钽铌矿捕收剂的研究[J]. 广东有色金属学报, 2003(2): 79-82.

    Google Scholar

    [10] 王介良, 曹钊, 王建英, 等. 辛基羟肟酸在氟碳铈矿表面的吸附机理[J]. 中南大学学报: 自然科学版, 2019(4): 762-770.

    Google Scholar

    [11] 胡岳华, 韩海生, 田孟杰, 等. 苯甲羟肟酸铅金属有机配合物在氧化矿浮选中的作用机理及其应用[J]. 矿产保护与利用, 2018(1): 42-47.

    Google Scholar

    [12] SONG C, ZHOU YY, LIU QJ, et al. Effects of BaCl2 on K-feldspar flotation using dodecyl amine chloride under natural pH[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(11): 2335-2340. doi: 10.1016/S1003-6326(18)64878-2

    CrossRef Google Scholar

    [13] 邱显扬, 高玉德. 苯甲羟肟酸与铌钽锰矿作用机理的研究[J]. 有色金属: 选矿部分. 2005(6): 37-40.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(8)

Article Metrics

Article views(1639) PDF downloads(148) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint