Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2021 Vol. 41, No. 3
Article Contents

LIU Jiajian, CHEN Wei, ZHOU Kanggen, ZHANG Xuekai, PENG Changhong, HE Dewen. Research Progress of Iron Recovery from Red Mud[J]. Conservation and Utilization of Mineral Resources, 2021, 41(3): 70-75. doi: 10.13779/j.cnki.issn1001-0076.2021.03.011
Citation: LIU Jiajian, CHEN Wei, ZHOU Kanggen, ZHANG Xuekai, PENG Changhong, HE Dewen. Research Progress of Iron Recovery from Red Mud[J]. Conservation and Utilization of Mineral Resources, 2021, 41(3): 70-75. doi: 10.13779/j.cnki.issn1001-0076.2021.03.011

Research Progress of Iron Recovery from Red Mud

  • Red mud is a strong alkaline solid waste produced in the process of alumina production from bauxite. At present there are not only environmental hazards in the stacking treatment, but also the failure to utilize the rich metal resources. On the basis of summarizing the main properties and disposal status of red mud, this paper introduces the recovery technology of iron resource with the highest content in red mud in detail. The latest iron extraction technology of red mud at home and abroad are summarizes from three aspects of physical separation, pyrometallurgy and hydrometallurgy. And and compares the process routes and technical parameters of different iron extraction methods are explains. The advantages, disadvantages and application scope of each method are reviewed, The development direction of each method is prospected.

  • 加载中
  • [1] 岳晶晶, 刘钟森, 程越迈, 等. 不同种植植物对赤泥盐离子迁移与分布的影响[J]. 矿产保护与利用, 2020, 40(3): 46-50.

    Google Scholar

    [2] 雷清源, 周康根, 何德文, 等. 赤泥中钪和钛的回收研究进展[J]. 矿产保护与利用, 2019, 39(3): 15-20.

    Google Scholar

    [3] ZHANG X, ZHOU K, CHEN W, et al. Recovery of iron and rare earth elements from red mud through an acid leaching-stepwise extraction approach[J]. Journal of Central South University, 2019, 26(2): 458-466. doi: 10.1007/s11771-019-4018-6

    CrossRef Google Scholar

    [4] 杨艳娟, 李建伟, 张茂亮, 等. 改性赤泥免烧砖的制备与放射性屏蔽机理分析[J]. 矿产保护与利用, 2019, 39(1): 95-99.

    Google Scholar

    [5] 李彬, 王枝平, 曲凡, 等. 赤泥中有价金属的回收现状与展望[J]. 昆明理工大学学报(自然科学版), 2019, 44(2): 1-10.

    Google Scholar

    [6] ZHANG X, ZHOU K, LEI Q, et al. Selective Removal of Iron from Acid Leachate of Red Mud by Aliquat 336[J]. JOM, 2019, 71(12): 4608-4615. doi: 10.1007/s11837-019-03801-4

    CrossRef Google Scholar

    [7] ARROYO F, LUNA-GALIANO Y, LEIVA C, et al. Environmental risks and mechanical evaluation of recycling red mud in bricks[J]. Environmental Research, 2020, 186: 109537. doi: 10.1016/j.envres.2020.109537

    CrossRef Google Scholar

    [8] IOANNIDI A, OULEGO P, COLLADO S, et al. Persulfate activation by modified red mud for the oxidation of antibiotic sulfamethoxazole in water[J]. Journal of Environmental Management, 2020, 270: 110820. doi: 10.1016/j.jenvman.2020.110820

    CrossRef Google Scholar

    [9] LI X, XIAO W, LIU W, et al. Recovery of alumina and ferric oxide from Bayer red mud rich in iron by reduction sintering[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(5): 1342-1347. doi: 10.1016/S1003-6326(08)60447-1

    CrossRef Google Scholar

    [10] LIU X, GAO P, YUAN S, et al. Clean utilization of high-iron red mud by suspension magnetization roasting[J]. Minerals engineering, 2020, 157: 106553. doi: 10.1016/j.mineng.2020.106553

    CrossRef Google Scholar

    [11] LI G, LIU M, RAO M, et al. Stepwise extraction of valuable components from red mud based on reductive roasting with sodium salts[J]. Journal of Hazardous Materials, 2014, 280: 774-780. doi: 10.1016/j.jhazmat.2014.09.005

    CrossRef Google Scholar

    [12] 常军, 邵延海, 李硕, 等. 云南某赤泥还原焙烧-磁选试验研究[J]. 轻金属, 2017(8): 4-10.

    Google Scholar

    [13] LEI Q, HE D, ZHOU K, et al. Separation and recovery of scandium and titanium from red mud leaching liquor through a neutralization precipitation-acid leaching approach[J]. Journal of Rare Earths, 2020. https://doi.org/10.1016/j.jre.2020.07.030 doi: 10.1016/j.jre.2020.07.030

    CrossRef Google Scholar

    [14] 顾汉念, 郭腾飞, 马时成, 等. 赤泥中铁的提取与回收利用研究进展[J]. 化工进展, 2018, 37(9): 3599-3608.

    Google Scholar

    [15] 齐川. 赤泥中有价金属提取的进展[J]. 轻金属, 2019(6): 6-10.

    Google Scholar

    [16] 许金越. SLon脉动高梯度磁选技术在赤泥除铁的应用及理论研究[D]. 赣州: 江西理工大学, 2009.

    Google Scholar

    [17] 廖国平, 钱枝花, 黄会春. SLon磁选机在氧化铝产业链中的应用[J]. 现代矿业, 2010, 26(8): 118-119. doi: 10.3969/j.issn.1674-6082.2010.08.039

    CrossRef Google Scholar

    [18] 李彬, 张宝华, 宁平, 等. 赤泥资源化利用和安全处理现状与展望[J]. 化工进展, 2018, 37(2): 714-723.

    Google Scholar

    [19] 武国娟. 赤泥中铁磁选回收方法的研究[J]. 科学与财富, 2019(27): 282.

    Google Scholar

    [20] 周凯. 低温拜耳法赤泥磁选提铁试验研究[J]. 现代矿业, 2011, 27(1): 36-38. doi: 10.3969/j.issn.1674-6082.2011.01.008

    CrossRef Google Scholar

    [21] 徐淑安, 邵延海, 熊述清, 等. 疏水团聚-磁种法回收赤泥中微细粒铁矿试验[J]. 矿产综合利用, 2015(6): 62-66. doi: 10.3969/j.issn.1000-6532.2015.06.016

    CrossRef Google Scholar

    [22] 吕玉辰. 克钦邦铁锡矿选矿试验研究[D]. 昆明: 昆明理工大学, 2019.

    Google Scholar

    [23] 顾汉念, 王宁, 刘世荣, 等. 烧结法赤泥的物质组成与颗粒特征研究[J]. 岩矿测试, 2012, 31(2): 312-317. doi: 10.3969/j.issn.0254-5357.2012.02.022

    CrossRef Google Scholar

    [24] 刘培坤, 姜兰越, 杨兴华, 等. 全重选法赤泥选铁富集性能试验研究[J]. 轻金属, 2017(6): 22-27.

    Google Scholar

    [25] 张谌虎, 石开仪, 陈鹏, 等. 回收某赤泥中铁的选矿试验研究[J]. 矿业研究与开发, 2020, 40(7): 156-159.

    Google Scholar

    [26] LI X, ZHOU Z, WANG Y, et al. Enrichment and separation of iron minerals in gibbsitic bauxite residue based on reductive Bayer digestion[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(7): 1980-1990. doi: 10.1016/S1003-6326(20)65355-9

    CrossRef Google Scholar

    [27] 杜金明, 蔡冰冰, 胡波, 等. 分级重选—磁选—反浮选联合工艺处理某高泥赤铁矿[J]. 湖南有色金属, 2021, 37(1): 16-20. doi: 10.3969/j.issn.1003-5540.2021.01.005

    CrossRef Google Scholar

    [28] 陆扬. 一种从氧化铝赤泥中回收铁精矿和矿砂的工艺: 111589572A[P]. 2020.08.28.

    Google Scholar

    [29] WEI D, JUN HUI X, YANG P, et al. Iron extraction from red mud using roasting with sodium salt[J]. Mineral processing and extractive metallurgy review, 2021, 42(3): 153-161. doi: 10.1080/08827508.2019.1706049

    CrossRef Google Scholar

    [30] LIU Y, ZUO K, YANG G, et al. Recovery of ferric oxide from bayer red mud by reduction roasting-magnetic separation process[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed, 2016, 31(2): 404-407. doi: 10.1007/s11595-016-1383-y

    CrossRef Google Scholar

    [31] VALEEV D, ZINOVEEV D, KONDRATIEV A, et al. Reductive smelting of neutralized red mud for iron recovery and produced pig iron for heat-resistant castings[J]. Metals, 2020, 10(1): 32.

    Google Scholar

    [32] SAMOUHOS M, TAXIARCHOU M, PILATOS G, et al. Controlled reduction of red mud by H2 followed by magnetic separation[J]. Minerals Engineering, 2017, 105: 36-43. doi: 10.1016/j.mineng.2017.01.004

    CrossRef Google Scholar

    [33] JIN J, LIU X, YUAN S, et al. Innovative utilization of red mud through co-roasting with coal gangue for separation of iron and aluminum minerals[J]. Journal of Industrial and Engineering Chemistry, 2021, 98: 298-307. doi: 10.1016/j.jiec.2021.03.038

    CrossRef Google Scholar

    [34] LONG Q, LI J, CHEN C, et al. Optimization of iron and aluminum recovery in bauxite[J]. Journal of Iron and Steel Research International, 2020, 27(3): 310-318. doi: 10.1007/s42243-019-00360-5

    CrossRef Google Scholar

    [35] 李恒, 刘晓明, 赵喜彬, 等. 生物质松木锯末中低温还原高铁拜耳法赤泥[J]. 工程科学学报, 2017, 39(9): 1331-1338.

    Google Scholar

    [36] LIU Y, ZHAO B, TANG Y, et al. Recycling of iron from red mud by magnetic separation after co-roasting with pyrite[J]. Thermochimica Acta, 2014, 588: 11-15. doi: 10.1016/j.tca.2014.04.027

    CrossRef Google Scholar

    [37] LI X, XIAO W, LIU W, et al. Recovery of alumina and ferric oxide from Bayer red mud rich in iron by reduction sintering[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(5): 1342-1347. doi: 10.1016/S1003-6326(08)60447-1

    CrossRef Google Scholar

    [38] LIU X, GAO P, YUAN S, et al. Clean utilization of high-iron red mud by suspension magnetization roasting[J]. Minerals Engineering, 2020, 157: 106553. doi: 10.1016/j.mineng.2020.106553

    CrossRef Google Scholar

    [39] GRUDINSKY P, ZINOVEEV D, PANKRATOV D, et al. Influence of Sodium Sulfate Addition on Iron Grain Growth during Carbothermic Roasting of Red Mud Samples with Different Basicity[J]. Metals, 2020, 10(12): 1571. doi: 10.3390/met10121571

    CrossRef Google Scholar

    [40] 杨帆, 张涛, 谢刚, 等. 不同添加剂对某铝土矿拜耳法溶出性能的研究[J]. 有色金属工程, 2018, 8(6): 51-55. doi: 10.3969/j.issn.2095-1744.2018.06.011

    CrossRef Google Scholar

    [41] CHUN T. Recovery of iron from red mud by high-temperature reduction of carbon-bearing briquettes[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2017, 117(4): 361-364. doi: 10.17159/2411-9717/2017/v117n4a7

    CrossRef Google Scholar

    [42] LONG H, CHUN T, DI Z, et al. Preparation of metallic iron powder from pyrite cinder by carbothermic reduction and magnetic separation[J]. Metals, 2016, 6(4): 88. doi: 10.3390/met6040088

    CrossRef Google Scholar

    [43] 张洋洋, 吴雪兰, 陈意帆, 等. 某铁精矿浮选脱硫探究试验[J]. 科技视界, 2020(28): 115-118.

    Google Scholar

    [44] WANG K, LIU Y, ZHANG T, et al. Investigation of the smelting reduction mechanism and of iron extraction from high-iron red mud[J]. Materials Research Express, 2020, 7(12): 126514 (11pp). . doi: 10.1088/2053-1591/abd137

    CrossRef Google Scholar

    [45] 范艳青, 朱坤娥, 蒋训雄. 赤泥中铁资源的回收利用研究[J]. 有色金属(冶炼部分), 2019(9): 72-76. doi: 10.3969/j.issn.1007-7545.2019.09.013

    CrossRef Google Scholar

    [46] VALEEV D, ZINOVEEV D, KONDRATIEV A, et al. Reductive smelting of neutralized red mud for Iron recovery and produced pig Iron for heat-resistant castings[J]. Metals, 2020, 10(1): 32.

    Google Scholar

    [47] PEPPER R A, COUPERTHWAITE S J, MILLAR G J. Comprehensive examination of acid leaching behaviour of mineral phases from red mud: Recovery of Fe, Al, Ti, and Si[J]. Minerals Engineering, 2016, 99: 8-18. doi: 10.1016/j.mineng.2016.09.012

    CrossRef Google Scholar

    [48] ZHANG X, ZHOU K, LEI Q, et al. Stripping of Fe(Ⅲ) from Aliquat 336 by NaH2PO4: implication for rare-earth elements recovery from red mud[J]. Separation science and technology, 2021, 56(2): 301-309. doi: 10.1080/01496395.2020.1713814

    CrossRef Google Scholar

    [49] ZHANG X, ZHOU K, WU Y, et al. Separation and recovery of iron and scandium from acid leaching solution of red mud using D201 resin[J]. Journal of Rare Earths, 2020, 38(12): 1322-1329. doi: 10.1016/j.jre.2019.12.005

    CrossRef Google Scholar

    [50] 薛真, 薛彦辉, 王力. 拜耳法赤泥中铝铁的盐酸浸出过程研究[J]. 矿产综合利用, 2018(6): 139-143. doi: 10.3969/j.issn.1000-6532.2018.06.029

    CrossRef Google Scholar

    [51] 宁凌峰, 何德文, 陈伟, 等. 赤泥中硫酸选择性浸出铁、钪及动力学研究[J]. 矿冶工程, 2019, 39(3): 81-84. doi: 10.3969/j.issn.0253-6099.2019.03.020

    CrossRef Google Scholar

    [52] YANG Y, WANG X, WANG M, et al. Recovery of iron from red mud by selective leach with oxalic acid[J]. Hydrometallurgy, 2015, 157: 239-245. doi: 10.1016/j.hydromet.2015.08.021

    CrossRef Google Scholar

    [53] ZHU X, NIU Z, LI W, et al. A novel process for recovery of aluminum, iron, vanadium, scandium, titanium and silicon from red mud[J]. Journal of Environmental Chemical Engineering, 2020, 8(2): 103528. doi: 10.1016/j.jece.2019.103528

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Article Metrics

Article views(2760) PDF downloads(352) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint