Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2021 Vol. 41, No. 1
Article Contents

HU Bo, HUANG Lingyun, SUN Xin, YANG Siyuan, TONG Xiong. Research Progress of Mine Wastewater Treatment Technology[J]. Conservation and Utilization of Mineral Resources, 2021, 41(1): 46-52. doi: 10.13779/j.cnki.issn1001-0076.2021.01.007
Citation: HU Bo, HUANG Lingyun, SUN Xin, YANG Siyuan, TONG Xiong. Research Progress of Mine Wastewater Treatment Technology[J]. Conservation and Utilization of Mineral Resources, 2021, 41(1): 46-52. doi: 10.13779/j.cnki.issn1001-0076.2021.01.007

Research Progress of Mine Wastewater Treatment Technology

More Information
  • Mine wastewater is mainly produced in the process of mining operation and mineral processing operation. The pollutants in wastewater include heavy metal ion, oil, acid, cyanide pollution, fluoride and so on. Based on the introduction to the source, characteristics and harm of mine wastewater, the most commonly used treatment methods of mine wastewater containing plant organic matter and heavy metal ions, such as ion exchange, adsorption, membrane technology, acid and alkali neutralization, coagulation sedimentation method, chemical precipitation, chemical oxidation, electrochemical method and many other typical wastewater treatment technology are introduced. The basic principle, advantages and disadvantages of each processing method are summarized. The research and development direction of mine wastewater treatment technology in the future is prospected.

  • 加载中
  • [1] 牟力, 何腾兵, 黄会前, 等. 酸性矿山废水治理技术的研究进展[J]. 天津农业科学, 2017, 23(2): 42-45. doi: 10.3969/j.issn.1006-6500.2017.02.010

    CrossRef Google Scholar

    [2] 李香兰, 李蘅. 某钨矿选矿废水处理研究[J]. 大众科技, 2011(7): 129-130. doi: 10.3969/j.issn.1008-1151.2011.07.052

    CrossRef Google Scholar

    [3] 丛志远, 赵峰华. 酸性矿山废水研究的现状及展望[J]. 中国矿业, 2003(3): 15-18.

    Google Scholar

    [4] 赵玲, 王荣锌, 李官, 等. 矿山酸性废水处理及源头控制技术展望[J]. 金属矿山, 2009(7): 131-135. doi: 10.3321/j.issn:1001-1250.2009.07.040

    CrossRef Google Scholar

    [5] WANG Q, ZHANG D, TIAN S, et al. Simultaneous adsorptive removal of methylene blue and copper ions from aqueous solution by ferrocene-modified cation exchange resin[J]. Journal of Applied Polymer Science, 2015, 131(21): 8558-8572.

    Google Scholar

    [6] ZARRABI M, SOORI MM, SEPEHR MN, et al. Removal of phosphorus by ion-exchange resins: equilibrium, kinetic and thermodynamic tudies[J]. Environmental Engineering & Management Journal, 2015, 13(2): 891-903

    Google Scholar

    [7] 邓慧东, 舒祖骏, 周志全, 等. 离子交换法从某铀尾矿库废水中除锰技术研究[J]. 铀矿冶, 2017, 36(4): 115-118.

    Google Scholar

    [8] 肖利萍, 裴格, 魏芳, 等. 处理矿山废水的膨润土复合吸附剂材料筛选[J]. 水处理技术, 2014, 40(3): 36-41.

    Google Scholar

    [9] NIU JR, DING PJ, JIA XX, et al. Study of the properties and mechanism of deep reduction and efficient adsorption of Cr(Ⅵ) by low-cost Fe3O4-modified ceramsite[J]. Science of the Total Environment, 2019, 688: 994-1004. doi: 10.1016/j.scitotenv.2019.06.333

    CrossRef Google Scholar

    [10] YE ZX, YIN XB, CHEN LF, et al. An integrated process for removal and recovery of Cr(Ⅵ) from electroplating wastewater by ion exchange and reduction-precipitation based on a silica -supported pyridine resin[J]. Journal of Cleaner Production, 2019, 236: 168-180.

    Google Scholar

    [11] 张鑫, 张焕祯. 金属矿山酸性废水处理技术研究进展[J]. 中国矿业, 2012, 21(4): 45-48. doi: 10.3969/j.issn.1004-4051.2012.04.011

    CrossRef Google Scholar

    [12] 赵丽芹. 超滤-反渗透应急饮用水处理试验研究[D]. 杭州: 浙江大学, 2016.

    Google Scholar

    [13] HAO LL, WANG N, WANG C, et al. Arsenic removal from water and river water by the combined adsorption-UF membrane process[J]. Chemosphere, 2018, 202: 768-776. doi: 10.1016/j.chemosphere.2018.03.159

    CrossRef Google Scholar

    [14] SITI KHADIJAH HUBADILLAH, MOHD HAFIZ DZARFAN OTHMAN, A. F. ISMAIL, et al. A low cost hydrophobic kaolin hollow fiber membrane (h-KHFM) for arsenic removal from aqueous solution via direct contact membrane distillation[J]. Separation and Purification Technology, 2018(7): 1383-5866.

    Google Scholar

    [15] 郑雅杰, 彭映林, 李长虹. 二段中和法处理酸性矿山废水[J]. 中南大学学报: 自然科学版, 2011, 42(5): 1215-1219.

    Google Scholar

    [16] FENG D, J. VAN DEVENTER, ALDRICH C. Removal of pollutants from acid mine wastewater using metallurgical by-product slags. Separation and purification technology, 2004, 40(1): 61-67. doi: 10.1016/j.seppur.2004.01.003

    CrossRef Google Scholar

    [17] 杨小文, 杜英豪. 污泥处理与资源化利用方案选择[J]. 中国给水排水, 2002, 18(4): 31-33. doi: 10.3321/j.issn:1000-4602.2002.04.009

    CrossRef Google Scholar

    [18] 李军, 陈邦林, 胡建斌, 等. 高温突越法处理城市污泥的研究[J]. 环境科学学报, 2000, 20(6): 751-754. doi: 10.3321/j.issn:0253-2468.2000.06.018

    CrossRef Google Scholar

    [19] 何孝磊, 程一松, 何丽. HDS工艺处理某矿山酸性废水试验研究[J]. 金属矿山, 2010(1): 147-150.

    Google Scholar

    [20] 严群, 桂勇刚, 周娜娜, 等. 混凝沉淀法处理含砷选矿废水[J]. 环境工程学报, 2014(9): 3683-3688.

    Google Scholar

    [21] 邱小敏, 陈增民. 聚合氯化铝替代硫酸铝作废水絮凝剂工业试验[J]. 低碳世界, 2018(8): 27-28. doi: 10.3969/j.issn.2095-2066.2018.08.020

    CrossRef Google Scholar

    [22] 马健伟, 任淑鹏, 初阳, 等. 化学沉淀法处理重金属废水的研究进展[J]. 化学工程师, 2018(8): 57-59.

    Google Scholar

    [23] 王明辉, 晏波, 麦戈, 等. 分步沉淀法处理酸性矿山废水[J]. 化工环保, 2016, 36(1): 47-52. doi: 10.3969/j.issn.1006-1878.2016.01.010

    CrossRef Google Scholar

    [24] 窦若岸, 陈彬彬, 罗生乔, 等. 化学沉淀法处理高浓度含氟废水的研究[J]. 有机氟工业, 2016(2): 9-11.

    Google Scholar

    [25] CHEN YQ, TANG JJ, LI WL, et al. Thermal decomposition of magnesium ammonium phosphate and adsorption properties of its pyrolysis products toward ammonia nitrogen[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(2): 497-503. doi: 10.1016/S1003-6326(15)63630-5

    CrossRef Google Scholar

    [26] 李超, 王丽萍. 选矿废水处理技术的研究进展[J]. 矿产保护与利用, 2020, 40(1): 72-78.

    Google Scholar

    [27] 章丽萍, 项俊, 严振宇, 等. O3降解水杨羟肟酸选矿废水机理研究[J]. 矿业科学学报, 2019, 4(1): 79-85.

    Google Scholar

    [28] 林小凤, 傅平丰, 邹凤羽, 等. 高级氧化技术降解有机选矿药剂的研究进展[J]. 金属矿山, 2019(9): 1-7.

    Google Scholar

    [29] WANG X, LIU W, DUAN H, et al. Degradation mechanism study of amine collectors in Fenton process by quantitative structure-activity relationship analysis[J]. Physicochemical Problems of Mineral Processing, 2018(3): 713-721.

    Google Scholar

    [30] 金洁蓉, 陈赛松, 杨岳平, 等. 铁粉还原-Fenton氧化处理络合铜废水的研究[J]. 环境工程学报, 2010(6): 1353-1356.

    Google Scholar

    [31] 林文鹏. 电化学法处理工业有机废水新技术研究进展[J]当代化工, 2016, 45(11): 2638-2641, 2645. doi: 10.3969/j.issn.1671-0460.2016.11.042

    CrossRef Google Scholar

    [32] 邱敬贤, 刘君, 梁凤仪. 电化学法处理电镀废水的研究进展[J]. 再生资源与循环经济, 2019, 12(10): 37-40.

    Google Scholar

    [33] 侯筱凡. 电絮凝处理含铜废水的试验研究[J]. 资源节约与环保, 2013(8): 128-129. doi: 10.3969/j.issn.1673-2251.2013.08.103

    CrossRef Google Scholar

    [34] AOUDJ S, KHELIFA A, DROUICHE N, et al. HF waste-water remediation by electrocoagulation process[J]. Desalination and Water Treatment, 2013, 51(10): 1596-1602.

    Google Scholar

    [35] 张少峰, 胡熙恩. 三维电极电解法处理含铅废水[J]. 工业水处理, 2012, 32(4): 42-45. doi: 10.3969/j.issn.1005-829X.2012.04.012

    CrossRef Google Scholar

    [36] 阳承胜, 蓝崇钰, 束文圣. 宽叶香蒲人工湿地对铅/锌矿废水净化效能的研究[J]. 深圳大学学报, 2000, 17(2-3): 51-57.

    Google Scholar

    [37] ONUR CAN T, CENGIZ T, HARUN B, et al. Constructed Wetlands as Green Tools for Management of Boron Mine Wastewater[J]. International Journal of Phytoremediation, 2014, 16(6): 537-553. doi: 10.1080/15226514.2013.798620

    CrossRef Google Scholar

    [38] LIAN JJ, XU SG, ZHANG YM, et al. Molybdenum(Ⅵ) removal by using constructed wetlands with different filter media and plants[J]. Water Science and Technology, 2013, 67(8): 1859. doi: 10.2166/wst.2013.067

    CrossRef Google Scholar

    [39] 籍国东, 孙铁珩, 李顺. 人工湿地及其在工业废水处理中的应用[J]. 应用生态学报, 2002(2): 224-228.

    Google Scholar

    [40] MAREE JP, HILL E. Biological Removal of Sulphate from Industrial Effluents and Concomitent Production of Sulphur[J]. Sci. Tech, 1989(21): 265-276.

    Google Scholar

    [41] LEANDRO AUGUSTO GOUVEA DE GODOI, EUGENIO FORESTI, MARCIA HELENA RISSATO ZAMARIOLLI DAMIANOVIC. Down-flow fixed-structured bed reactor: An innovative reactor configuration applied to acid mine drainage treatment and metal recovery[J]. Journal of Environmental Management, 2017(197): 597-604.

    Google Scholar

    [42] 董慧, 张瑞雪, 吴攀, 等. 利用硫酸盐还原菌去除矿山废水中污染物试验研究[J]. 水处理技术, 2012, 38(5): 31-35.

    Google Scholar

    [43] 边德军, 任庆凯, 田曦, 等. 有色金属冶炼含砷铁酸性废水处理工艺设计方案[J]. 环境科学与技术, 2010, 33(5): 151-153.

    Google Scholar

    [44] 贾彦松, 葛庆. 沉淀/吸附法处理电镀废水中的重金属[J]. 当代化工, 2020, 49(10): 2133-2137.

    Google Scholar

    [45] 高尚雄, 叶开发, 李承, 等. 德国铀尾矿库退役治理技术考察报告[J]. 铀矿冶, 2003, 22(4): 208-211.

    Google Scholar

    [46] 朱秋华, 方容茂, 张玲文, 等. 紫金山含铜酸性废水治理工业实践[J]. 现代矿业, 2014(3): 92-95.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2710) PDF downloads(624) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint