Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2021 Vol. 41, No. 1
Article Contents

ZHU Honglong, SHUAI Huan, LIU Li, FENG Wenxiang, DU Gaoxiang. Reviews in Application of Non-metallic Minerals Materials Used in Mine Wastewater Treatment[J]. Conservation and Utilization of Mineral Resources, 2021, 41(1): 26-31. doi: 10.13779/j.cnki.issn1001-0076.2021.01.004
Citation: ZHU Honglong, SHUAI Huan, LIU Li, FENG Wenxiang, DU Gaoxiang. Reviews in Application of Non-metallic Minerals Materials Used in Mine Wastewater Treatment[J]. Conservation and Utilization of Mineral Resources, 2021, 41(1): 26-31. doi: 10.13779/j.cnki.issn1001-0076.2021.01.004

Reviews in Application of Non-metallic Minerals Materials Used in Mine Wastewater Treatment

More Information
  • Non-metallic mineral materials with big reserves and low prices, have great application prospects in the field of mine wastewater treatment. The application properties of the ten kinds of non-metallic mineral materials such as quartz, vermiculite, kaolin, illite, rectorite, perlite, tourmaline, graphite, limestone, apatite, etc, used in mine wastewater containing H+, heavy metal, fluorine, organic matter, etc, are reviewed. The proposal was also put forward for development trends of non-metallic minerals materials used in mine wastewater treatment.

  • 加载中
  • [1] 李超, 王丽萍. 矿物材料处理废水的研究进展[J]. 矿产保护与利用, 2020, 40(1): 65-71.

    Google Scholar

    [2] 陈明莲. 选矿废水处理及回用技术研究[J]. 现代矿业, 2017, 33(1): 237-239. doi: 10.3969/j.issn.1674-6082.2017.01.070

    CrossRef Google Scholar

    [3] 刘芳莹. 海泡石对酸性矿山废水中铅和镉吸附去除研究[D]. 郑州: 郑州大学, 2012.

    Google Scholar

    [4] 冯章标, 何发钰, 邱廷省. 选矿废水治理与循环利用技术现状及展望[J]. 金属矿山, 2016(7): 71-77. doi: 10.3969/j.issn.1001-1250.2016.07.011

    CrossRef Google Scholar

    [5] 杜高翔. 矿物材料在环保产业的应用[M]. 北京: 中国建材工业出版社, 2020: 1-5.

    Google Scholar

    [6] 张俊洁, 肖利萍, 刘保卫. Fenton试剂-石英砂工艺处理铁锰矿井废水[J]. 水资源与水工程学报, 2011, 22(4): 121-123.

    Google Scholar

    [7] 颜金利, 汪晓军, 黎玉香, 等. 负载氧化铁石英砂用于Fenton-流化床体系处理印染废水的研究[J]. 水处理技术, 2012, 38(2): 76-78+83. doi: 10.3969/j.issn.1000-3770.2012.02.019

    CrossRef Google Scholar

    [8] 任博, 于海琴, 宋贺强. 改性石英砂强化火电厂中水回用微污染物处理效果研究[J]. 水处理技术, 2012, 38(1): 118-121. doi: 10.3969/j.issn.1000-3770.2012.01.027

    CrossRef Google Scholar

    [9] 王敏, 周立祥. 硅藻土、石英砂和钾离子促进微生物转化酸性矿山废水中亚铁成次生矿物的研究[J]. 岩石矿物学杂志, 2011, 30(6): 1031-1038. doi: 10.3969/j.issn.1000-6524.2011.06.009

    CrossRef Google Scholar

    [10] YANG B, CHANG Q, HE C, et al. Wettability study of mineral wastewater treatment filter media[J]. Chemical Engineering & Processing Process Intensification, 2007, 46(10): 975-981.

    Google Scholar

    [11] 包彩霞, 常青, 未碧贵. 石英砂滤料表面润湿改性[J]. 环境工程学报, 2014, 8(5): 1915-1920.

    Google Scholar

    [12] 田维亮, 葛振红. 蛭石功能材料研究进展[J]. 精细化工, 2019, 36(4): 541-548.

    Google Scholar

    [13] DOS ANJIOS V E, ROHWEDDER J R, CADORE S, et al. Montmorillonite and vermiculite as solid phases for the preconcentration of trace elements in natural waters: Adsorption and desorption studies of As, Ba, Cu, Cd, Co, Cr, Mn, Ni, Pb, Sr, V and Zn[J]. Applied Clay Science, 2014, 99: 289-296. doi: 10.1016/j.clay.2014.07.013

    CrossRef Google Scholar

    [14] TRAN L, WU P X, ZHU Y J, et al. Comparative study of Hg(Ⅱ)adsorption by thiol- and hydroxyl-containing bifunctional montmorillonite and vermiculite[J]. Applied Surface Science, 2015, 356: 91-101. doi: 10.1016/j.apsusc.2015.08.038

    CrossRef Google Scholar

    [15] TIAN W, KONG X, JIANG M, et al. Hierarchical layered double hydroxide epitaxially grown on vermiculite for Cr(Ⅵ) removal[J]. Materials Letters, 2016, 175(15): 110-113.

    Google Scholar

    [16] 周新木, 谈宏宇, 徐招弟. 蛭石对稀土离子的吸附性能研究[J]. 非金属矿, 2004(2): 5-7. doi: 10.3969/j.issn.1000-8098.2004.02.002

    CrossRef Google Scholar

    [17] 张莹, 李洪玲, 肖芙蓉, 等. 改性蛭石对汞离子吸附性能的影响[J]. 石河子大学学报(自然科学版), 2011, 29(5): 613-617. doi: 10.3969/j.issn.1007-7383.2011.05.018

    CrossRef Google Scholar

    [18] 李英. 改性蛭石对水中氟离子的吸附性能研究[D]. 石河子: 石河子大学, 2018.

    Google Scholar

    [19] ZORICA P TOMI C, VESNA P LOGAR, BILJANA M BABIC, et al. Comparison of structural, textural and thermal characteristics of pure and acid treated bentonites from Aleksinac and Petrovac (Serbia)[J]. Spectrochimica Acta Part A, 2011, 82(1): 389-395. doi: 10.1016/j.saa.2011.07.068

    CrossRef Google Scholar

    [20] SERGEY VGOLUBEV, ANDREAS BAUER, OLEG S POKROVSKY. Effect of pH and organic ligands on the kinetics of smectite dissolution at 25℃[J]. Geochimicaet Cosmochimica Acta, 2006(70): 4436-4451.

    Google Scholar

    [21] 多喜. 高岭土改性吸附材料的制备表征及其吸附性能的研究[D]. 呼和浩特: 内蒙古师范大学, 2017.

    Google Scholar

    [22] 黄明. 磁性高岭土的制备及其对Cu2+和Pb2+的吸附性能[D]. 南昌: 华东交通大学, 2016.

    Google Scholar

    [23] ZHANG R, CHEN C L, LI J, et al. Preparation of montmorillonite@carbon composite and its application for U(Ⅵ) removal from aqueous solution[J]. Applied Surface Science, 2015, 349: 129-137. doi: 10.1016/j.apsusc.2015.04.222

    CrossRef Google Scholar

    [24] 赵玉婷, 冷阳春, 王彦惠, 等. 高岭土对U(Ⅵ)的吸附性能研究[J]. 核技术, 2019, 42(8): 34-40.

    Google Scholar

    [25] BENEDICTO A, DEGUELDRE C, MISSANA T. Gallium sorption on montmorillonite and illite colloids: Experimental study and modelling by ionic exchange and surface complexation[J]. Applied Geochemistry, 2014, 40: 43-50. doi: 10.1016/j.apgeochem.2013.10.015

    CrossRef Google Scholar

    [26] 刘盼, 扶咏梅, 殷世强, 等. 伊利石吸附处理重金属废水研究展望[J]. 平顶山学院学报, 2016, 31(5): 55-58. doi: 10.3969/j.issn.1673-1670.2016.05.012

    CrossRef Google Scholar

    [27] 朱益萍, 王学刚, 聂世勇, 等. 改性伊利石对水中放射性U(Ⅵ)的吸附性能研究[J]. 水处理技术, 2020, 46(5): 30-35.

    Google Scholar

    [28] WU S, FANG J, XU W, et al. Bismuth-modified rectorite with high visible light photocatalytic activity[J]. Journal of Molecular Catalysis A Chemical, 2013, 373: 114-120. doi: 10.1016/j.molcata.2013.03.012

    CrossRef Google Scholar

    [29] 李世迁. 累托石基多功能复合水处理材料制备及性能研究[D]. 武汉: 武汉大学, 2011.

    Google Scholar

    [30] 冯志桃. 累托石表面改性及其对废水中无机污染物的吸附研究[D]. 天津: 天津大学, 2017.

    Google Scholar

    [31] 马万征, 吴刘栋, 郭芮, 等. 活性炭-珍珠岩复合材料处理含铬废水的研究[J]. 应用化工, 2014, 43(2): 228-230+235.

    Google Scholar

    [32] 马晓锋. 信阳典型非金属矿的改性及其吸附Pb(Ⅱ)性能研究[D]. 信阳: 信阳师范学院, 2018.

    Google Scholar

    [33] 冯玮琳, 谢英豪, 潘湛昌, 等. Y-Zr/TiO2/膨胀珍珠岩模拟太阳光下催化氧化水体中As(Ⅲ)[J]. 水处理技术, 2013, 39(11): 45-48. doi: 10.3969/j.issn.1000-3770.2013.11.010

    CrossRef Google Scholar

    [34] HENRY D J, NOVAK M, HAWTHOME F C, et al. Nomenclature of the tourmaline-supergroup minerals[J]. American Mineralogist, 2011, 96(5): 895-913.

    Google Scholar

    [35] GUERRA D L, OLIVEIRA S P, SILVA R A R, et al. Characterization and application of tourmaline and beryl from Brazilian pegmatite in adsorption process with divalent metals[J]. International Journal of Mining Science & Technology, 2012, 22(5): 711-718.

    Google Scholar

    [36] WANG C P, WANG B L, LIU J T, et al. Adsorption of Cd(Ⅱ)from acidic aqueous solutions by tourmaline as a novel material[J]. Environmental Chemistry, 2012, 24(57): 3218-3225.

    Google Scholar

    [37] 牛政, 张伟. 电气石的自发极化效应在环境水处理中的研究进展[J]. 中国非金属矿工业导刊, 2014(1): 7-9+40. doi: 10.3969/j.issn.1007-9386.2014.01.003

    CrossRef Google Scholar

    [38] 钟佳, 王风贺. 电气石在水处理方面的应用[J]. 科技创新导报, 2009(25): 62-63.

    Google Scholar

    [39] 程源. 电气石处理重金属离子废水实验研究[J]. 武汉理工大学学报, 2012, 34(5): 91-95.

    Google Scholar

    [40] WANG X, WANG J, ZHAGN J, et al. Synthesis of expanded graphite C/C composites (EGC) based Ni-N-TiO2 floating photocatalysts for in situ adsorption synergistic photocatalytic degradation of diesel oil[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 347: 105-115.

    Google Scholar

    [41] 赵颖华. 膨胀石墨的制备及其对金属离子去除性能的研究[D]. 上海: 东华大学, 2012.

    Google Scholar

    [42] 张宵宁, 黄雪莉, 胡子昭, 等. 改性膨胀石墨在处理废水中的研究进展[J]. 现代化工, 2019, 39(10): 29-32.

    Google Scholar

    [43] 王丹. 膨胀石墨的制备及其对捕收剂吸附研究[D]. 昆明: 昆明理工大学, 2017.

    Google Scholar

    [44] HUANG Z H, ZHENG X, LV W, et al. Adsorption of lead(Ⅱ) ions from aqueous solution on low-temperature exfoliated graphene nanosheets[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2011, 27(12): 7558.

    Google Scholar

    [45] 丁海涛, 黄文涛, 邓呈逊. 氧化石墨烯材料在废水处理中的应用进展[J]. 安徽农学通报, 2019, 25(21): 123-126.

    Google Scholar

    [46] CAO Y W, LAI Z L, FENG J C, et al. Graphene oxide sheets covalently functionalized with block copolymers via click chemistry as reinforcing fillers[J]. Journal of Materials Chemistry, 2011, 21(25): 9271-9278.

    Google Scholar

    [47] SITKO R, TUREK E, ZAWISZA B, et al. Adsorption of divalent metal ions from aqueous solutions using graphene oxide[J]. Dalton Transactions, 2013, 42(16): 5682-5689.

    Google Scholar

    [48] 张河民, 钟铭君, 吴启堂. 石灰石沟-堆肥湿地系统处理酸性矿山废水的研究[J]. 中国环境科学, 2015, 35(10): 3032-3040.

    Google Scholar

    [49] 张学洪, 许立巍, 朱义年, 等. 石灰石和方解石预处理酸性含氟废水的试验研究[J]. 矿冶工程, 2005(2): 49-52.

    Google Scholar

    [50] 胥焕岩, 马成国, 金立国, 等. 磷灰石晶体化学性质及其环境属性应用[J]. 化学工程师, 2011, 25(3): 34-38+69.

    Google Scholar

    [51] 陈柏迪. 基于矿物磷灰石的环境功能材料改性及其对铀(Ⅵ)的吸附研究[D]. 广州: 广州大学, 2017.

    Google Scholar

    [52] 王瑜. 材料结晶度、施加低分子量有机酸影响纳米羟基磷灰石环境应用的研究[D]. 南京: 南京农业大学, 2010.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2043) PDF downloads(164) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint