Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2020 Vol. 40, No. 6
Article Contents

XUN Jingwen, WANG Yubin, MA Xiaoxiao, WANG Yan, LI Shuqin. Oxidation-dissolution Characteristics of Molybdenite During the Flotation Process[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 95-101. doi: 10.13779/j.cnki.issn1001-0076.2020.06.015
Citation: XUN Jingwen, WANG Yubin, MA Xiaoxiao, WANG Yan, LI Shuqin. Oxidation-dissolution Characteristics of Molybdenite During the Flotation Process[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 95-101. doi: 10.13779/j.cnki.issn1001-0076.2020.06.015

Oxidation-dissolution Characteristics of Molybdenite During the Flotation Process

More Information
  • In order to reveal the oxidation-dissolution mechanism of molybdenite in the flotation process, the products were characterized by means of XPS, SEM, EDS and Raman spectroscopy, and the solution properties was detected through conductivity, pH value and ion concentration. The results show that there are different oxidation ability of molybdenum and sulfur between the polar surface and the non-polar surface of molybdenite, and the sulfur is more easily oxidized. The solubility of oxidation products of different elements on the polar surface of molybdenite are also various, and the oxidation product of sulfur on the polar surface is easier to dissolve. During the oxidation-dissolution process of molybdenite, the pH value of the solution decreases firstly and then increases, and the solution conductivity the remains unchanged after reaching 0.51 S·m-1. The oxidation products of the sulfur on the polar surface of molybdenite are fully dissolved when the oxidation-dissolution time is 0.5 h, which causes the concentration of SO42- in the solution reaches 56.8 mg/L and the relative content of sulfur on the polar surface reaches a minimum of 24.92%. In view of the fact that the conductivity of the solution remains basically unchanged and the relative content of Mo-O bond almost unchanged when the oxidation-dissolution time is greater than 2.0 h, the oxidation products of the molybdenum on the polar surface of the molybdenite attain solution equilibrium. The research can provide a theoretical basis for realizing the control of molybdenite hydration capacity in the flotation process, and it also has certain reference significance for improving the separation efficiency of molybdenite.

  • 加载中
  • [1] В. А. Γлембоцкиий. 浮选过程物理化学基础[M]. 北京: 冶金工业出版社, 1985.

    Google Scholar

    [2] 牛晓鹏. 方铅矿、黄铜矿和黄铁矿表面氧化与可浮性研究[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2019.

    Google Scholar

    [3] 肖策环. 微细粒黄铜矿表面特性与可浮性关系研究[D]. 赣州: 江西理工大学, 2016.

    Google Scholar

    [4] ZHU Y G, ZHANG G F, FENG Q M, et al. Effect of surface dissolution on flotation separation of fine ilmenite from titanaugite[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(5): 1149-1154. doi: 10.1016/S1003-6326(11)60835-2

    CrossRef Google Scholar

    [5] 何发钰, 张文彬, 戈保梁. 辉铜矿氧化溶解行为的研究[J]. 矿冶, 1994(4): 45-49.

    Google Scholar

    [6] 柯家骏. 辉钼矿晶面特性工艺矿物学的研究[J]. 化工冶金, 1981(4): 35-41. doi: 10.3321/j.issn:1009-606X.1981.04.005

    CrossRef Google Scholar

    [7] 黄霞光, 卢可可. 微细粒辉钼矿浮选行为研究[J]. 矿产保护与利用, 2014(2): 18-21.

    Google Scholar

    [8] 林清泉, 詹信顺, 张红华, 等. 辉钼矿和黄铁矿的晶体结构与表面性质研究[J]. 矿冶工程, 2019, 39(3): 40-45.

    Google Scholar

    [9] 吕建业, 沈耀平, 张洪恩. 辉钼矿表面特性及其可浮性的研究[J]. 有色金属(选矿部分), 1992(4): 4-8, 41.

    Google Scholar

    [10] 李希明, 柯家骏. 硫化钼矿浸取过程热力学分析[J]. 化工冶金, 1982(4): 89-95. doi: 10.3321/j.issn:1009-606X.1982.04.011

    CrossRef Google Scholar

    [11] 赵中伟, 刘大学. 使用氧逸度-pH图对辉钼矿浸出过程的热力学分析[J]. 中国钼业, 2009, 33(1): 18-21. doi: 10.3969/j.issn.1006-2602.2009.01.006

    CrossRef Google Scholar

    [12] CHANDER S, FUERSTENAU D W. On the natural floatability of molybdenite[J]. Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers, 1972, (1): 62-69.

    Google Scholar

    [13] BERTRAND. Surface-phonon dispersion of MoS2[J]. Physical Review. B, Condensed matter, 1991, 44(11): 5745-5749. doi: 10.1103/PhysRevB.44.5745

    CrossRef Google Scholar

    [14] LEE C G, YAN H G, BRUS L E, et al. Anomalous lattice vibrations of single- and few-layer MoS2[J]. ACS Nano. 2010, 4(5): 2695-700. doi: 10.1021/nn1003937

    CrossRef Google Scholar

    [15] 林清泉, 顾帼华, 陈雄, 等. 微细粒辉钼矿的浮选动力学研究[J]. 中南大学学报(自然科学版), 2018, 49(7): 1573-1581.

    Google Scholar

    [16] 付云枫. 氧压水浸法分解辉钼矿提取分离钼硫资源的应用基础研究[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2018.

    Google Scholar

    [17] 李忠瑞, 姜明, 伏义路. 硫化Mo-K-Rh/Al2O3表面物种的XPS研究[J]. 化学物理学报, 1997(3): 50-53.

    Google Scholar

    [18] 魏淑贤, 李阳, 葛少辉, 等. MoS2催化剂活性位形成及甲硫醇脱硫机理的研究[J]. 高校化学工程学报, 2018, 32(4): 956-962. doi: 10.3969/j.issn.1003-9015.2018.04.028

    CrossRef Google Scholar

    [19] WANG L, JI X H, WANG T, et al. Novel red emission from MoO3/MoS2-MoO2-MoO3 core-shell belt surface[J]. ACS Applied Materials & Interfaces, 2018, 10(42): 36297-36303.

    Google Scholar

    [20] LI H, ZHANG Q, YAP C C R, et al. From bulk to monolayer MoS2: evolution of Raman scattering[J]. Advanced Functional Materials, 2012, 22(7): 1385-1390. doi: 10.1002/adfm.201102111

    CrossRef Google Scholar

    [21] HIRAJIMA T, MORI M, ICHIKAWA O, et al. Selective flotation of chalcopyrite and molybdenite with plasma pre-treatment[J]. Minerals Engineering, 2014, 66/67/68(11): 102-111.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(1063) PDF downloads(12) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint