Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2020 Vol. 40, No. 6
Article Contents

ZHANG Hanquan, XU Xin, CHEN Guanhua, ZHOU Feng. School of Resources & Safety Engineering, Wuhan Institute of Technology[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 58-63. doi: 10.13779/j.cnki.issn1001-0076.2020.06.009
Citation: ZHANG Hanquan, XU Xin, CHEN Guanhua, ZHOU Feng. School of Resources & Safety Engineering, Wuhan Institute of Technology[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 58-63. doi: 10.13779/j.cnki.issn1001-0076.2020.06.009

School of Resources & Safety Engineering, Wuhan Institute of Technology

More Information
  • Phosphate ore is an important raw material for phosphorus chemical production and plays an important role in the development of national economy. The negative factors such as the decrease of phosphate ore inclusion grade, the similarity of mineral properties between useful minerals and gangue minerals, and the excessively fine mineral mosaics affect the development of phosphate ore dressing technology. The study of the interaction mechanism between agents and minerals is helpful to improve the mineral separation effect, the importance and flotation status of phosphate ores were reviewed, and the application and mechanism of sodium hexametaphosphate in flotation of medium-grade and low-grade phosphate ores were emphatically studied. It is found that sodium hexametaphosphate has two main roles in phosphate ore flotation: First, the addition of sodium hexametaphosphate will form a competitive adsorption with the collector on the apatite mineral surface, which further inhibits the adsorption of the collector on the apatite mineral surface, thus changing the hydrophilicity of the mineral; The second is that the addition of sodium hexametaphosphate will cause the change of mineral surface potential, so that the interaction force between mineral particles will change accordingly, increasing the dispersion of mineral particles, and thus optimizing the mineral flotation conditions.

  • 加载中
  • [1] 张汉泉, 周峰, 许鑫, 等. 中国磷矿开发利用现状[J]. 武汉工程大学学报, 2020, 42(2): 159-164.

    Google Scholar

    [2] QIN BO CAO, JIN HUA CHENG, SHU MING WEN, et al. A mixed collector system for phosphate flotation[J]. Minerals Engineering, 2015, 78: 114-121. doi: 10.1016/j.mineng.2015.04.020

    CrossRef Google Scholar

    [3] 汪灵. 战略性非金属矿产的思考[J]. 矿产保护与利用, 2019, 39(6): 1-7.

    Google Scholar

    [4] 印万忠, 唐远, 姚金, 等. 矿物浮选过程中的交互影响[J]. 矿产保护与利用, 2018(3): 55-60.

    Google Scholar

    [5] RICHAED M KASOMO, HONG QIANG LI, HUI FANG ZHENG, et al. Depression of the selective separation of rutile from almandine by Sodium Hexametaphosphate[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 593.

    Google Scholar

    [6] GAO YUESHENG, GAO ZHIYONG, SUN WEI, et al. Adsorption of a novel reagent scheme on scheelite and calcite causing an effective flotation separation[J]. Journal of colloid and interface science, 2018, 512: 39-46. doi: 10.1016/j.jcis.2017.10.045

    CrossRef Google Scholar

    [7] 王永龙, 张芹, 周亮, 等. 油酸钠体系中微细粒胶磷矿的浮选行为[J]. 金属矿山, 2013(10): 72-75.

    Google Scholar

    [8] 黄齐茂, 黄晶晶, 王巍, 等. 湖北某胶磷矿粗选工艺的优化[J]. 武汉工程大学学报, 2011, 33(2): 17-19. doi: 10.3969/j.issn.1674-2869.2011.02.004

    CrossRef Google Scholar

    [9] 任翔, 张洪恩. 细粒菱锰矿、磷灰石溶解组分对其浮选分离的交互作用[J]. 北京矿冶研究总院学报, 1993(4): 24-31.

    Google Scholar

    [10] YAN FEI CHEN, QI MING FENG, GUO FAN ZHANG, et al. Effect of sodium pyrophosphate on the reverse flotation of dolomite[J]. Minerals, 2018, 8: 278. doi: 10.3390/min8070278

    CrossRef Google Scholar

    [11] 杨勇, 刘云涛, 李丰. 磷矿反浮选脱硅分批加药优化研究[J]. 化工矿物与加工, 2015, 44(1): 1-4, 8.

    Google Scholar

    [12] 李学军, 王丽娟, 鲁安怀, 等. 天然蛇纹石活性机理初探[C]//. 中国地质学会. 第二届全国环境矿物学学术研讨会论文集. 北京: 中国地质学会, 2004: 67-71.

    Google Scholar

    [13] YI PING LU, MING QIANG ZHANG, QI MING FENG, et al. Effect of sodium hexametaphosphate on separation of serpentine from pyrite[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(1): 208-213. doi: 10.1016/S1003-6326(11)60701-2

    CrossRef Google Scholar

    [14] 季学福. 六偏磷酸钠水解的计算及药龄控制[J]. 工业水处理, 1984(3): 4-10.

    Google Scholar

    [15] 王眉龙. 磷矿稀土在硫、磷混酸体系下的反应机理研究[D]. 贵阳: 贵州大学, 2015.

    Google Scholar

    [16] 王文潜. 六偏磷酸钠及其在锡石浮选中的应用[J]. 有色金属(冶炼部分), 1977(1): 22-29.

    Google Scholar

    [17] SALAH El-DIN El-MOFTY, AYMAN El-MIDANY. Calcite flotation in potassium oleate/potassium dihydrogen phosphate system[J]. Journal of Surfactants and Detergents, 2015, 18(5): 905-911. doi: 10.1007/s11743-015-1707-5

    CrossRef Google Scholar

    [18] ELGILLANI D A, ABOUZEID A. -Z. M. Flotation of carbonates from phosphate ores in acidic media[J]. Elgillani D. A; Abouzeid A. -Z. M. , 1993, 38(3/4): 235-256.

    Google Scholar

    [19] M. MOHAMMADKHANI, M. NOAPARAST, S. Z. SHFAEI, et al. Double reverse flotation of a very low-grade sedimentary phosphate rock, rich in carbonate and silicate[J]. International Journal of Mineral Processing, 2011, 100(3): 157-165.

    Google Scholar

    [20] 祁宗, 孙传尧. 白云石浮选中磷酸根与捕收剂的竞争关系分析[J]. 有色金属工程, 2013, 3(1): 33-36.

    Google Scholar

    [21] 韩英, 钟康年, 汤亚飞, 等. 对磷酸类抑制剂的探索[J]. 中国矿业, 1998(5): 3-5.

    Google Scholar

    [22] 谢国先, 罗廉明, 夏敬源, 等. 钙(镁)质胶磷矿脱镁反浮选酸的作用机理探析[J]. 化工矿物与加工, 2010, 39(10): 9-10, 13.

    Google Scholar

    [23] 宋少先, 卢寿慈. 微粒菱锰矿与脉石矿物互凝及化学分散作用的研究[J]. 矿冶工程, 1988(2): 16-20.

    Google Scholar

    [24] 李治杭, 韩跃新, 李艳军, 等. 六偏磷酸钠对蛇纹石作用机理分析[J]. 矿产综合利用, 2016(4): 52-55.

    Google Scholar

    [25] 王纪镇, 印万忠, 孙忠梅. 白钨矿与磷灰石浮选的选择性抑制及机理研究[J]. 有色金属工程, 2019, 9(2): 66-69.

    Google Scholar

    [26] YI JIANG LI, WEN CHENG XIA, LI PAN, et al. Flotation of low-rank coal using sodium oleate and sodium hexametaphosphate[J]. Journal of Cleaner Production, 2020, 261.

    Google Scholar

    [27] 叶军建. 微细粒磷灰石浮选的界面调控研究[D]. 贵阳: 贵州大学, 2019.

    Google Scholar

    [28] JUN JIAN YE, XIAN CHEN WANG, XIAN BO LI, et al. Effect of dispersants on dispersion stability of collophane and quartz fines in aqueous suspensions[J]. Journal of Dispersion Science and Technology, 2018, 39(11): 1655-1663.

    Google Scholar

    [29] 王淀佐, 胡岳华. 浮选溶液化学[M]. 长沙: 湖南科学技术出版社, 1978.

    Google Scholar

    [30] MISHRA S. K. The electrokinetics of apatite and calcite in inorganic electrolyte environment[J]. Mishra S. K, 1978, 5(1): 69-83.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(3)

Article Metrics

Article views(1634) PDF downloads(11) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint