Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2020 Vol. 40, No. 6
Article Contents

JI Huichao, DONG Xiongbo, YANG Huaming. Fine Processing of Sepiolite and Its Application in Strategic Emerging Industries[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 16-25. doi: 10.13779/j.cnki.issn1001-0076.2020.06.003
Citation: JI Huichao, DONG Xiongbo, YANG Huaming. Fine Processing of Sepiolite and Its Application in Strategic Emerging Industries[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 16-25. doi: 10.13779/j.cnki.issn1001-0076.2020.06.003

Fine Processing of Sepiolite and Its Application in Strategic Emerging Industries

More Information
  • Sepiolite is widely used in the strategic emerging industries. The structure and physicochemical properties of sepiolite are introduced. The purification and processing technology of sepiolite are illustrated. The research progress of Sepiolite in four strategic emerging industries, such as energy conservation, environmental protection, new energy, biology and new materials, are reviewed. The large specific surface area, good adsorption ability, rheological properties, thermal stability and catalytic properties of sepiolite are the foundation for its multifunctional application. More in-depth research on the exploiting multifunctional sepiolite will be investigated with the development of science and technology. Sepiolite presents broad application prospects in various research fields.

  • 加载中
  • [1] 郑水林. 非金属矿加工与应用[M]. 北京: 化学工业出版社, 2009: 143-147.

    Google Scholar

    [2] 杨华明, 等. 硅酸盐矿物功能材料[M]. 北京: 科学出版社, 2019: 6-7.

    Google Scholar

    [3] ZHUANG G Z, GAO J H, CHEN H W, et al. A new one-step method for physical purification and organic modification of sepiolite[J]. Applied Clay Science, 2018, 153: 1-8. doi: 10.1016/j.clay.2017.11.045

    CrossRef Google Scholar

    [4] 黄小红. 海泡石的功能化改性及其在吸附和催化性能方面的研究[D]. 长沙: 中南大学, 2008: 1-10.

    Google Scholar

    [5] GVR E, ALTINISIK A, YURDAKOC K. Preparation and characterization of chitosan/sepiolite bionanocomposites for tetracycline release[J]. Polymer Composites, 2017, 38(9): 1810-1818. doi: 10.1002/pc.23751

    CrossRef Google Scholar

    [6] JAVIERA, CERVINI-SILVA, MARíA, et al. Cell growth underpinned by sepiolite[J]. Applied Clay Science, 2017, 137: 77-82. doi: 10.1016/j.clay.2016.11.032

    CrossRef Google Scholar

    [7] KUTALKOVA E, PLACHY T, SEDLACIK M. On the enhanced sedimentation stability and electrorheological performance of intelligent fluids based on sepiolite particles[J]. Journal of Molecular Liquids, 2020, 309: 113-120.

    Google Scholar

    [8] 何明乙, 张欢, 戴亚堂, 等. 海泡石-花球状BiOCl纳米复合材料的制备及其光催化性能[J]. 材料研究学报, 2015, 29(3): 178-184.

    Google Scholar

    [9] LIU Y, MAO Y Y, TANG X X, et al. Synthesis of Ag/AgCl/Fe-S plasmonic catalyst for bisphenol A degradation in heterogeneous photo-Fenton system under visible light irradiation[J]. Chinese Journal of Catalysis, 2017, 38(10): 1726-1735. doi: 10.1016/S1872-2067(17)62902-4

    CrossRef Google Scholar

    [10] 于生慧. 纳米环境矿物材料的制备及重金属处理研究[D]. 合肥: 中国科学技术大学, 2016: 17-19

    Google Scholar

    [11] 王雪琴, 李珍, 杨友生. 海泡石的改性及应用研究现状[J]. 中国非金属矿工业导刊, 2003(3): 11-14. doi: 10.3969/j.issn.1007-9386.2003.03.003

    CrossRef Google Scholar

    [12] TARTAGLIONE G, TABUANI D, CAMINO G. Thermal and morphological characterisation of organically modified sepiolite[J]. Microporous & Mesoporous Materials, 2008, 107(1-2): 161-168.

    Google Scholar

    [13] 吴平霄. 黏土矿物材料与环境修复[M]. 北京: 化学工业出版社, 2004: 58-62.

    Google Scholar

    [14] 商增耀. 海泡石矿物纳米纤维表面阳离子的输运与转移研究[D]. 天津: 河北工业大学, 2016: 4-8.

    Google Scholar

    [15] DEGIRMENBASI N, BOZ N, KALYON D M. Biofuel production via transesterification using sepiolite-supported alkaline catalysts[J]. Applied Catalysis B Environmental, 2014, 150-151: 147-156. doi: 10.1016/j.apcatb.2013.12.013

    CrossRef Google Scholar

    [16] 郑承辉, 欧阳静, 侯凯, 等. β-海泡石提纯与胺基改性及其用作CO2固体吸附剂的研究[J]. 矿冶工程, 2017, 37(3): 129-132. doi: 10.3969/j.issn.0253-6099.2017.03.033

    CrossRef Google Scholar

    [17] ESTEBAN-CUBILLO A, MARCO J F, MOYA J S, et al. On the nature and location of nanoparticulate iron phases and their precursors synthetized with in a sepiolite matrix[J]. Journal of Physical Chemistry C, 2008, 112(8): 2864-2871. doi: 10.1021/jp077173w

    CrossRef Google Scholar

    [18] 张学兵, 司炳艳. 海泡石的性状及应用研究[J]. 中外建筑, 2011(1): 135-136. doi: 10.3969/j.issn.1008-0422.2011.01.040

    CrossRef Google Scholar

    [19] 李虹, 杨兰荪. 湖南永和低品位海泡石提纯研究[J]. 非金属矿, 1995(3): 47-48.

    Google Scholar

    [20] 杜高翔, 郑水林, 赵纪新, 等. 海泡石的生产应用与研究现状[J]. 矿冶工程, 2004, 24(z1): 34-39. doi: 10.3969/j.issn.0253-6099.2004.z1.010

    CrossRef Google Scholar

    [21] ZHOU F, YAN C, ZHANG Y, et al. Purification and defibering of a Chinese sepiolite[J]. Applied Clay Science, 2016, 124/125(may): 119-126.

    Google Scholar

    [22] 谭建杰, 程琪林, 吴婷, 等. 海泡石提纯改性及在内墙涂覆材料中的应用研究[J]. 非金属矿, 2017, 40(3): 89-92. doi: 10.3969/j.issn.1000-8098.2017.03.025

    CrossRef Google Scholar

    [23] 屈小梭, 宋贝, 郑水林, 等. 海泡石的选矿提纯与精矿物化特性研究[J]. 非金属矿, 2013, 36(4): 35-36, 68. doi: 10.3969/j.issn.1000-8098.2013.04.012

    CrossRef Google Scholar

    [24] 曹伟城, 谢襄漓, 刘伟, 等. 海泡石的酸处理和有机海泡石的制备[J]. 化工矿物与加工, 2012, 41(4): 7-11. doi: 10.3969/j.issn.1008-7524.2012.04.003

    CrossRef Google Scholar

    [25] 贺洋. 低品质海泡石提纯及吸附性能研究[J]. 非金属矿, 2019, 42(4): 56-57.

    Google Scholar

    [26] CHEN B B, JIA Y H, ZHANG M J, et al. Facile modification of sepiolite and its application in superhydrophobic coatings[J]. Applied Clay Science, 2019, 174: 1-9. doi: 10.1016/j.clay.2019.03.016

    CrossRef Google Scholar

    [27] SHEN Q, OUYANG J, ZHANG Y, et al. Lauric acid/modified sepiolite composite as a form-stable phase change material for thermal energy storage[J]. Applied Clay Science, 2017, 146: 14-22. doi: 10.1016/j.clay.2017.05.035

    CrossRef Google Scholar

    [28] SHEN Q, LIU S Y, OUYANG J, et al. Sepiolite supported stearic acid composites for thermal energy storage[J]. Rsc Advances, 2016, 113(6): 112493-112501.

    Google Scholar

    [29] SARI A, SHARMA R K, HEKIMOGLU G, et al. Preparation, characterization, thermal energy storage properties and temperature control performance of form-stabilized sepiolite based composite phase change materials[J]. Energy and Buildings, 2019, 188(4): 111-119.

    Google Scholar

    [30] 方至萍, 廖敏, 张楠, 等. 施用海泡石对铅、镉在土壤-水稻系统中迁移与再分配的影响[J]. 环境科学, 2017, 38(7): 3028-3035.

    Google Scholar

    [31] 凤迎春, 何少华, 高伟, 李红霞. 海泡石对废水中有机物和重金属的吸附[J]. 净水技术, 2006(5): 63-66. doi: 10.3969/j.issn.1009-0177.2006.05.019

    CrossRef Google Scholar

    [32] 杨秀敏, 任广萌, 李立新, 等. 土壤pH值对重金属形态的影响及其相关性研究[J]. 中国矿业, 2017, 26(6): 79-83. doi: 10.3969/j.issn.1004-4051.2017.06.015

    CrossRef Google Scholar

    [33] 黄湘云, 何文艳, 李金鑫, 等. 酸热活化, 有机化, 柱撑改性海泡石对土壤中钒的吸附固定[J]. 环境工程, 2020, 38(2): 147-152.

    Google Scholar

    [34] 谢婧如, 陈本寿, 张进忠, 等. 巯基改性海泡石吸附水中的Hg(Ⅱ)[J]. 环境科学, 2016, 37(6): 2187-2194.

    Google Scholar

    [35] 陈卫, 马龙, 刘海成. 磁改性海泡石对水源水中腐殖酸的吸附性能[J]. 河海大学学报(自然科学版), 2017, 45(2): 109-115.

    Google Scholar

    [36] NAING H H, WANG K, LI Y, et al. Sepiolite supported BiVO4 nanocomposites for efficient photocatalytic degradation of organic pollutants: Insight into the interface effect towards separation of photogenerated charges[J]. Science of The Total Environment, 2020722.137825. Https: //doi. org/10.1016/j. scitotenv. 2020.137825. doi: 10.1016/j.scitotenv.2020.137825

    CrossRef Google Scholar

    [37] 徐西蒙, 宗绍燕, 刘丹. 磁改性海泡石催化过二硫酸盐降解双酚A[J]. 哈尔滨工业大学学报, 2019, 51(8): 60-66.

    Google Scholar

    [38] CHEN D L, PAN K L, CHANG M B. Catalytic removal of phenol from gas streams by perovskite-type catalysts[J]. 环境科学学报: 英文版, 2017, 56(6): 131-139.

    Google Scholar

    [39] 韩静, 段二红, 尹丽鲲, 等. 改性海泡石对丙酮的吸附特性研究[J]. 河北工业科技, 2017, 34(5): 381-388.

    Google Scholar

    [40] ARDAKANI M B, MAHABADI H A, JAFARI A J. Removal of toluene from air streams by cobalt-copper bimetallic catalysts supported on sepiolite[J]. Toxicological and Environmental Chemistry, 2019, 101(3): 1-16.

    Google Scholar

    [41] 熊巧. 双晶相TiO2/海泡石纤维复合光催化剂的制备及其光催化性能研究[D]. 武汉: 武汉理工大学, 2013.

    Google Scholar

    [42] WANG Z H, BUI Q, ZHANG B, et al. Biomass energy production and its impacts on the ecological footprint: An investigation of the G7 countries[J]. Science of the Total Environment, 2020, 743: 140741. doi: 10.1016/j.scitotenv.2020.140741

    CrossRef Google Scholar

    [43] GARCÍA, SANCHIS R, MIGUEL P J, et al. Low temperature conversion of levulinic acid into γ-valerolactone using Zn to generate hydrogen from water and nickel catalysts supported on sepiolite[J]. RSC Advances, 2020, 10(35): 20395-20404. doi: 10.1039/D0RA04018E

    CrossRef Google Scholar

    [44] HE Y C, JIANG C X, JIANG J W, et al. One-pot chemo-enzymatic synthesis of furfuralcohol from xylose[J]. Bioresource Technology, 2017, 238: 698-705. doi: 10.1016/j.biortech.2017.04.101

    CrossRef Google Scholar

    [45] PENG B, MA C L, ZHANG P Q, et al. An effective hybrid strategy for converting rice straw to furoic acid by tandem catalysis via Sn-sepiolite combined with recombinant E. coli whole cells harboring horse liver alcohol dehydrogenase[J]. Green Chemistry, 2019, 21: 5914-5923. doi: 10.1039/C9GC02499A

    CrossRef Google Scholar

    [46] CHEN M Q, WANG C S, WANG Y S, et al. Hydrogen production from ethanol steam reforming: Effect of Ce content on catalytic performance of Co/Sepiolite catalyst[J]. Fuel, 2019, 247: 344-355. doi: 10.1016/j.fuel.2019.03.059

    CrossRef Google Scholar

    [47] WANG C S, WANG Y S, CHEN M Q, et al. Hydrogen production from ethanol steam reforming over Co-Ce/sepiolite catalysts prepared by a surfactant assisted coprecipitation method[J]. International Journal of Hydrogen Energy, 2019, 44(49): 26888-26904. doi: 10.1016/j.ijhydene.2019.08.058

    CrossRef Google Scholar

    [48] SELVITEPE N, BALBAY A, SAKA C. Optimisation of sepiolite clay with phosphoric acid treatment as support material for CoB catalyst and application to produce hydrogen from the NaBH4 hydrolysis[J]. International Journal of Hydrogen Energy, 2019, 44(31): 16387-16399. doi: 10.1016/j.ijhydene.2019.04.254

    CrossRef Google Scholar

    [49] CERVINI-SILVA J, NIETO-CAMACHO A, RAMÍREZ-APAN M T, et al. Anti-inflammatory, anti-bacterial, and cytotoxic activity of fibrous clays[J]. Colloids & Surfaces B Biointerfaces, 2015, 129: 1-6.

    Google Scholar

    [50] LÓPEZ-PACHECO C P, NIETO-CAMACHO A, ZARATE-REYES L, et al. Sepiolite and palygorskite-underpinned regulation of mRNA expression of pro-inflammatory cytokines as determined by a murine inflammation model[J]. Applied Clay Science, 2017, 137: 43-49. doi: 10.1016/j.clay.2016.12.006

    CrossRef Google Scholar

    [51] CASTRO-SMIRNOV F A, PIÉTREMENT O, ARANDA P, et al. Biotechnological applications of the sepiolite interactions with bacteria: Bacterial transformation and DNA extraction[J]. Applied Clay Science, 2020, 191: 105613. doi: 10.1016/j.clay.2020.105613

    CrossRef Google Scholar

    [52] PIÉTREMENT O, CASTRO-SMIRNOV F A, CAM E L, et al. Sepiolite as a new nanocarrier for DNA transfer into mammalian cells: proof of concept, issues and perspectives[J]. Chemical Record, 2017, 18: 849-857.

    Google Scholar

    [53] BIDDECI G, CAVALLARO G, DI BLASI F, et al. Halloysite nanotubes loaded with peppermint essential oil as filler for functional biopolymer film[J]. Carbohydrate Polymers, 2016, 152: 548-557. doi: 10.1016/j.carbpol.2016.07.041

    CrossRef Google Scholar

    [54] BEHROOZIAN S, SVENSSON S L, DAVIES J. Kisameet clay exhibits potent antibacterial activity against the ESKAPE pathogens[J]. mBio, 2016, 7(1): 01842-15.

    Google Scholar

    [55] 舒展, 张毅, 谢虹忆, 等. 硅酸盐黏土矿物在抗菌方面研究进展[J]. 材料工程, 2018, 46(4): 23-30.

    Google Scholar

    [56] EUSEPIA P, MARINELLIA L, BORREGO-SÁNCHEZ A, et al. Nano-delivery systems based on carvacrol prodrugs and fibrous clays[J]. Journal of Drug Delivery Science and Technology, 2020, 58: 101815. doi: 10.1016/j.jddst.2020.101815

    CrossRef Google Scholar

    [57] AFIFY A S, HASSAN M, PIUMETTI M, et al. Elaboration and characterization of modified sepiolites and their humidity sensing features for environmental monitoring[J]. Applied Clay Science, 2015, 115: 165-173. doi: 10.1016/j.clay.2015.07.019

    CrossRef Google Scholar

    [58] HASSAN M, AFIFY A S, TULLIANI J M. Synthesis of ZnO nanoparticles onto sepiolite needles and determination of their sensitivity towards humidity, NO2 and H2[J]. Journal of Materials Science & Technology, 2016, 32: 573-582.

    Google Scholar

    [59] DUAN Z H, JIANG Y D, ZHAO Q N, et al. Facile and low-cost fabrication of humidity sensor using naturally available sepiolite nanofibers[J]. Nanotechnology, 2020, 31: 355501. doi: 10.1088/1361-6528/ab932c

    CrossRef Google Scholar

    [60] WU W H, ZHANG Q, ZHOU X, et al. Self-powered photovoltaic photodetector established on lateral monolayer MoS2-WS2 heterostructures[J]. Nano Energy, 2018, 51: 45-53. doi: 10.1016/j.nanoen.2018.06.049

    CrossRef Google Scholar

    [61] ZHANG S J, TONG W S, WANG J, et al. Modified sepiolite/PVDF-HFP composite film with enhanced piezoelectric and dielectric properties[J]. Journal of Applied Polymer Science, 2020, 48412.

    Google Scholar

    [62] JAURAND M C F, RENIER A, DAUBRIAC J. Mesothelioma: Do asbestos and carbon nanotubes pose the same health risk[J]. Particle & Fibre Toxicology, 2009, 6: 16.

    Google Scholar

    [63] HOU K, OUYANG J, ZHENG C H, et al. Surface-modified sepiolite fibers for reinforcing resin brake composites[J]. Materials Express, 2017, 7(2): 104-112. doi: 10.1166/mex.2017.1355

    CrossRef Google Scholar

    [64] M. MAR GONZÀLEZ DEL CAMPO, M DARDER, P ARANDA, et al. Nanomaterials: functional hybrid nanopaper by assembling nanofibers of cellulose and sepiolite[J]. Advanced Functional Materials, 2018, 28(27): 1870187. doi: 10.1002/adfm.201870187

    CrossRef Google Scholar

    [65] KIM H, RYU K H, BAEK D, et al. 3D printing of polyethylene terephthalate glycol-sepiolite composites with nanoscale orientation[J]. ACS Applied Materials & Interfaces, 2020, 12: 23453-23463.

    Google Scholar

    [66] LIANG C B, QIU H, SONG P, et al. Ultra-light MXene aerogel/wood-derived porous Carbon composites with wall-like Mortar/Brick structures for electromagnetic interference shielding[J]. Science Bulletin, 2020, 65(8): 616-622. doi: 10.1016/j.scib.2020.02.009

    CrossRef Google Scholar

    [67] SHANG Q, FENG H X, FENG Z Y, et al. Facile fabrication of sepiolite functionalized composites with tunable dielectric properties and their superior microwave absorption performance[J]. Journal of Colloid and Interface ence, 2020, 576: 444-456. doi: 10.1016/j.jcis.2020.05.052

    CrossRef Google Scholar

    [68] YIN H J, YPASEUTHF D S, SCHUBERT M, et al. Routes to halogen-free flame-retardant polypropylene wood plastic composites[J]. Polymers for Advanced Technologies, 2019, 30(1): 187-202. doi: 10.1002/pat.4458

    CrossRef Google Scholar

    [69] PAN P P, GUO C G, LI L P. Flame retardancy and thermal degradation properties of polypropylene/wood flour composite modified with aluminum hypophosphite/melamine cyanurate[J]. Journal of Thermal Analysis and Calorimetry, 2018, 135: 3085-3093. doi: 10.1007/s10973-018-7544-9

    CrossRef Google Scholar

    [70] 李歆, 贺茂勇, 李凯, 等. 海泡石和APP对PP/WF复合材料的阻燃抑烟作用[J]. 工程塑料应用, 2019, 47(11): 128-133.

    Google Scholar

    [71] LIU X L, GUO J, SUN J, et al. The preparation of a bisphenol A epoxy resin based ammonium polyphosphate ester and its effect on the char formation of fire resistant transparent coating[J]. Progress in Organic Coatings, 2019, 129: 349-356. doi: 10.1016/j.porgcoat.2019.01.003

    CrossRef Google Scholar

    [72] GUO B T, LIU Y Z, ZHANG Q, et al. Efficient flame-retardant and smoke-suppression properties of Mg-Al layered double hydroxide nanostructures on wood substrate[J]. Acs Appl Mater Interfaces, 2017, 9(27): 23039-23047. doi: 10.1021/acsami.7b06803

    CrossRef Google Scholar

    [73] XU Z S, LIU D L, YAN L, et al. Synergistic effect of sepiolite and polyphosphate ester on the fire protection and smoke suppression properties of an amino transparent fire-retardant coating[J]. Progress in Organic Coatings, 2020, 141: 105572.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(1)

Article Metrics

Article views(2953) PDF downloads(237) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint