Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2020 Vol. 40, No. 6
Article Contents

DING Yi, JIANG Zhengdi, XIAN Qiang, DAN Hui, DUAN Tao. Synthesis of Zircon and Its Application in the Immobilization of Nuclear Waste[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 8-15. doi: 10.13779/j.cnki.issn1001-0076.2020.06.002
Citation: DING Yi, JIANG Zhengdi, XIAN Qiang, DAN Hui, DUAN Tao. Synthesis of Zircon and Its Application in the Immobilization of Nuclear Waste[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 8-15. doi: 10.13779/j.cnki.issn1001-0076.2020.06.002

Synthesis of Zircon and Its Application in the Immobilization of Nuclear Waste

More Information
  • Zircon has been widely used in the field of geological dating, ceramics, glass, refractories and casting, and also has a good application prospect in the field of the immobilization of nuclear waste, due to its excellent physical and chemical properties. Therefore, zircon is a strategic non-metallic mineral. In this paper, the research on the immobilization of nuclear waste using zircon is summarized. The synthesis methods, simulated actinides immobilization behavior, thermal stability, chemical stability and irradiation stability of zircon waste form are introduced. Furthermore, the development in the future research of zircon is prospected.

  • 加载中
  • [1] ROBINSON K, GRBBS G V, RIBBE P H. The structure of zircon: a comparison with garnet[J]. American Mineralogist, 1971, 56: 782-790.

    Google Scholar

    [2] FINCH R J, HANCHAR J M. Structure and chemistry of zircon and zircon-group minerals[J]. Reviews in Mineralogy and Geochemistry, 2003, 53: 1-25. doi: 10.2113/0530001

    CrossRef Google Scholar

    [3] TU H, DUAN T, DING Y, et al. Phase and microstructural evolutions of the CeO2-ZrO2-SiO2 system synthesized by the sol-gel process[J]. Ceramics International, 2015, 41: 8046-8050. doi: 10.1016/j.ceramint.2015.02.155

    CrossRef Google Scholar

    [4] HANCHAR J M. A geochemical investigation of zircon[D]. PhD dissertation, Rensselaer Polytechnic Institute, Troy, New York, 1996, (210).

    Google Scholar

    [5] BOWRING S, HOUSH T. The Earth's early evolution[J]. Science, 1995, 269: 1535-1540. doi: 10.1126/science.7667634

    CrossRef Google Scholar

    [6] VERVOORT J D, PATCHETT P J, GEHRELS G E, et al. Constraints on early Earth differentiation from hafnium and neodymium isotopes[J]. Nature, 1996, 379: 624-627. doi: 10.1038/379624a0

    CrossRef Google Scholar

    [7] GIBSON G M, IRELAND T R. Granulite formation during continental extension in Fiordland, New Zealand[J]. Nature, 1995, 375: 479-482. doi: 10.1038/375479a0

    CrossRef Google Scholar

    [8] BOWDEN G J. A review of the low temperature properties of the rare Earth vanadates[J]. Australian Journal of Physics, 1998, 51: 201-236. doi: 10.1071/P97066

    CrossRef Google Scholar

    [9] SOLAR G S, PRESSLEY R A, BROWN M, et al. Granite ascent in convergent orogenic belts: Testing a model[J]. Geology, 1998, 26: 711-714. doi: 10.1130/0091-7613(1998)026<0711:GAICOB>2.3.CO;2

    CrossRef Google Scholar

    [10] HATCH L P. Ultimate disposal of radioactive wastes[J]. American Scientist, 1953, 41: 410-421.

    Google Scholar

    [11] RINGWOOD A E, KESSON S E, WARE N G. Immobilization of high level nuclear reactor wastes in SYNROC[J]. Nature, 1979, 278: 219-223. doi: 10.1038/278219a0

    CrossRef Google Scholar

    [12] EWING R C, LUTZE W, WEBER W J, Zircon: a host-phase for the disposal of weapons plutonium[J]. Journal of Materials Research, 1995, 10: 243-246. doi: 10.1557/JMR.1995.0243

    CrossRef Google Scholar

    [13] KELLER C. Untersuchungen ueber die germanate und silicate des typs ABO4 der vierwertigen elemente Thorium bis Americium[J]. Nukleonik, 1963(5): 41-48

    Google Scholar

    [14] EWING R C. The design and evaluation of nuclear-waste forms: clues from mineralogy[J]. Canadian Mineralogist, 2001(39): 697-715.

    Google Scholar

    [15] DING Y, LU X R, TU H, et al. Phase evolution and microstructure studies on Nd3+ and Ce4+ co-doped zircon ceramics[J]. Journal of the European Ceramic Society, 2015(35): 2153-2161.

    Google Scholar

    [16] DING Y, LU X R, DAN H, et al. Phase evolution and chemical durability of Nd-doped zircon ceramics designed to immobilize trivalent actinides[J]. Ceramics International, 2015, 41: 10044-10050. doi: 10.1016/j.ceramint.2015.04.092

    CrossRef Google Scholar

    [17] SPEARING D R, HUANG J Y. Zircon synthesis via sintering of milled SiO2 and ZrO2[J]. Journal of the American Ceramic Society, 1998, 81: 1964-1966.

    Google Scholar

    [18] PARCIANELLO G, BERNARDO E, COLOMBO P. Low temperature synthesis of zircon from silicone resins and oxide nano-sized particles[J]. Journal of the European Ceramic Society, 2012(32): 2819-2824.

    Google Scholar

    [19] SUN Y, YANG Q H, WANG H Q, et al. Depression of synthesis temperature and structure characterization of ZrSiO4 used in ceramic pigments[J]. Materials Chemistry and Physics, 2017, 205: 97-101.

    Google Scholar

    [20] VEYTIZOU C, QUISON J F, DOUY A. Sol-gel synthesis via an aqueous semi-alkoxide route and characterization of zircon powders[J]. Journal of Materials Chemistry, 2000, 10: 365-370. doi: 10.1039/a906003k

    CrossRef Google Scholar

    [21] WANG H D, JIANG W H, FENG G, et al. Preparation of zircon whiskers via non-hydrolytic sol-gel process combined with molten salt method[J]. Advanced Materials Research, 2014, 936: 970-974. doi: 10.4028/www.scientific.net/AMR.936.970

    CrossRef Google Scholar

    [22] ZHANG T, PAN Z, WANG Y. Low-temperature synthesis of zircon by soft mechano-chemical activation-assisted sol-gel method[J]. Journal of Sol-Gel Science and Technology, 2017, 84: 118-128. doi: 10.1007/s10971-017-4480-2

    CrossRef Google Scholar

    [23] DING Y, JIANG Z D, LI Y J, et al. Low temperature and rapid preparation of zirconia/zircon (ZrO2/ZrSiO4) composite ceramics by a hydrothermal-assisted sol-gel process[J]. Journal of Alloys and Compounds, 2017, 735: 2190-2196.

    Google Scholar

    [24] TU H, DUAN T, DING Y, et al. Preparation of zircon-matrix material for dealing with high-level radioactive waste with microwave[J]. Materials Letters, 2014, 131: 171-173. doi: 10.1016/j.matlet.2014.05.195

    CrossRef Google Scholar

    [25] BURAKOV B E. A study of high-uranium technogenous zircon (Zr, U) SiO4 from chernobyl lavas in connection with the problem of creating a crystalline matrix for high-level waste disposal[J]. Safe Manag Dispos Nucl Waste, 1993(2): 19-28.

    Google Scholar

    [26] WEBER W J, EWING R C, CATLOW C R A, et al. Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium[J]. Journal of Materials Research, 1998(13): 1434-1484.

    Google Scholar

    [27] HARKER A B, FLINTOFF J F. Polyphase ceramic for consolidating nuclear waste compositions with high Zr-Cd-Na content[J]. Journal of the American Ceramic Society, 2010(73): 1901-1906.

    Google Scholar

    [28] EWING R C. The design and evaluation of nuclear-waste forms: clues from mineralogy[J]. Canadian Mineralogist, 2001(39): 697-715.

    Google Scholar

    [29] ROBINSON K, GRBBS G V, RIBBE P H. The structure of zircon: a comparison with garnet[J]. American Mineralogist, 1971, 56: 782-790.

    Google Scholar

    [30] TAYLOR M, EWING R C. The crystal structures of the ThSiO4 polymorphs: huttonite and thorite[J]. Acta Crystallographica, 2010, 34: 1074-1079.

    Google Scholar

    [31] RENDTORFF N M, GRASSO S, HU C F, et al. Dense zircon (ZrSiO4) ceramics by high energy ball milling and spark plasma sintering[J]. Ceramics International, 2012, 38: 1793-1799. doi: 10.1016/j.ceramint.2011.10.001

    CrossRef Google Scholar

    [32] ARAZURI S C, JARÉN A J I, PÉREZ DE CIRIZA J J. Colloidal processing, sintering and mechanical properties of zircon (ZrSiO4)[J]. Journal of Food Engineering, 2015, 41: 1015-1021.

    Google Scholar

    [33] SPEAR J A. The actinide orthosilicates[J]. Reviews in Mineralogy, Mineralogical Society of America, 1982(5): 113-135.

    Google Scholar

    [34] SPEER J A, COOPER B J. Crystal structure of synthetic hafnon, HISiO4, comparison with zircon and the actinide orthosilicates[J]. American Mineralogist, 1982, 67: 7-8.

    Google Scholar

    [35] MUMPTON F A, Roy R. Hydrothermal stability studies of the zircon-thorite group[J]. Geochimica Et Cosmochimica Acta, 1961, 21: 217-238. doi: 10.1016/S0016-7037(61)80056-2

    CrossRef Google Scholar

    [36] WEBER W J. Radiation-induced defects and amorphization in zircon[J]. Journal of Materials Research, 1990(5): 2687-2697.

    Google Scholar

    [37] WEBER W J. Self-radiation damage and recovery in Pu-doped zircon[J]. Radiation Effects, 1991, 115: 341-349. doi: 10.1080/10420159108220580

    CrossRef Google Scholar

    [38] CURTIS C E, SOWMAN H G. Investigation of the thermal dissociation, reassociation, and synthesis of zircon[J]. Journal of the American Ceramic Society, 1953, 36: 190-198. doi: 10.1111/j.1151-2916.1953.tb12865.x

    CrossRef Google Scholar

    [39] KANNO Y. Thermodynamic and crystallographic discussion of the formation and dissociation of zircon[J]. Journal of Materials Science, 1989, 24: 2415-2420. doi: 10.1007/BF01174504

    CrossRef Google Scholar

    [40] TARTAJ P, SERNA C J, MOYA J S, et al. The formation of zircon from amorphous ZrO2·SiO2 powders[J]. Journal of Materials Science, 1996, 31: 6089-6094. doi: 10.1007/BF01152164

    CrossRef Google Scholar

    [41] ANSEAU M R, BILOQUE J P, FIERENS P. Some studies on the thermal solid state stability of zircon[J]. Journal of Materials Science, 1976(11): 578-582.

    Google Scholar

    [42] KLUTE R. Phasenbeziehungen im system Al2O3-Cr2O3-SiO2-ZrO2 unternbesonderer berücksichtigung des korundhaltigen bereichs[D]. 1982.

    Google Scholar

    [43] BUTTERMAN W C, Foster W R. Zircon stability and the ZrO2-SiO2 phase diagram[J]. American Mineralogist: Journal of Earth and Planetary Materials, 1967, 52: 880-885.

    Google Scholar

    [44] PIDGEON R T, NEIL J R, SILVER L T. Uranium and lead isotopic stability in a metamict zircon under experimental hydrothermal conditions[J]. Science, 1966, 154: 1538-1540. doi: 10.1126/science.154.3756.1538

    CrossRef Google Scholar

    [45] TOLE M P. The kinetics of dissolution of zircon (ZrSiO4)[J]. Geochimica et Cosmochimica Acta, 1985, 49: 453-458. doi: 10.1016/0016-7037(85)90036-5

    CrossRef Google Scholar

    [46] TROCELLIER P, DELMAS R. Chemical durability of zircon[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2001, 181: 408-412. doi: 10.1016/S0168-583X(01)00377-9

    CrossRef Google Scholar

    [47] XIE Y, FAN L, SHU X, et al. Chemical stability of Ce-doped zircon ceramics: Influence of pH, temperature and their coupling effects[J]. Journal of Rare Earths, 2017, 35: 164-171. doi: 10.1016/S1002-0721(17)60895-0

    CrossRef Google Scholar

    [48] 杨建文, 罗上庚, 李宝军, 等. 富烧绿石人造岩石固化模拟锕系废物[J]. 原子能科学技术, 2001, 35: 104-109.

    Google Scholar

    [49] ZHANG M, SALJE E K. Infrared spectroscopic analysis of zircon: Radiation damage and the metamict state[J]. Journal of physics: condensed matter, 2001(13): 3057-3071.

    Google Scholar

    [50] EVRON R, KIMMEL G, EYAL Y. Thermal recovery of self-radiation damage in uraninite and thorianite[J]. Journal of Nuclear Materials, 1994, 217: 54-66. doi: 10.1016/0022-3115(94)90304-2

    CrossRef Google Scholar

    [51] HOLLAND H D, GOTTFRIED D. The effect of nuclear radiation on the structure of zircon[J]. Acta Crystallographica, 1955(8): 291-300.

    Google Scholar

    [52] WEBER W J, EWING R C, MELDRUM A. The kinetics of alpha-decay-induced amorphization in zircon and apatite containing weapons-grade plutonium or other actinides[J]. Journal of Nuclear Materials, 1997, 250: 147-155. doi: 10.1016/S0022-3115(97)00271-7

    CrossRef Google Scholar

    [53] DING Y, JIANG Z D, LI Y J, et al. Effect of alpha-particles irradiation on the phase evolution and chemical stability of Nd-doped zircon ceramics[J]. Journal of Alloys and Compounds, 2017, 729: 483-491. doi: 10.1016/j.jallcom.2017.09.178

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(2094) PDF downloads(148) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint