Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2020 Vol. 40, No. 5
Article Contents

ZENG Haipeng, HUANG Hongjun. Study on Flotation of Copper Molybdenumt and Mechanism Under the Low Basicity Condition[J]. Conservation and Utilization of Mineral Resources, 2020, 40(5): 103-108. doi: 10.13779/j.cnki.issn1001-0076.2020.05.013
Citation: ZENG Haipeng, HUANG Hongjun. Study on Flotation of Copper Molybdenumt and Mechanism Under the Low Basicity Condition[J]. Conservation and Utilization of Mineral Resources, 2020, 40(5): 103-108. doi: 10.13779/j.cnki.issn1001-0076.2020.05.013

Study on Flotation of Copper Molybdenumt and Mechanism Under the Low Basicity Condition

More Information
  • Corresponding author: HUANG Hongjun
  • In order to explore the influence of pulp potential on flotation of copper molybdenum ore, chalcopyrite and molybdenite were used as samples to study the effects of pulp pH, flotation reagent type and consumption on pulp potential. The results show that the optimum slurry potential is 360 mV and pH is 8. When sodium sulfide, ammonium sulfate and sodium carbonate are mixed in 1:1:1, chalcopyrite is easier to reach the floating potential range. At the same time, when the pulp pH is about 9, mercaptoacetic acid can well inhibit the flotation of chalcopyrite, and has a good selective effect on molybdenite, which is conducive to the separation of the two. In the mechanism analysis, it is pointed out that the main reason for the flotation of chalcopyrite is the formation of a large amount of CuS in the pulp at pH 8.

  • 加载中
  • [1] 张丽荣, 印万忠, 丁亚卓, 等.辉钼矿电位调控浮选试验研究[J].矿冶, 2008, 17(4):15-18. doi: 10.3969/j.issn.1005-7854.2008.04.004

    CrossRef Google Scholar

    [2] ZHIXIANG C, GUOHUA G, SHUANGKE L, et al. The Effect of Seaweed Glue in the Separation of Copper-Molybdenum Sulphide Ore by Flotation[J]. Minerals, 2018, 8(2):41-45.

    Google Scholar

    [3] 赵敏捷.硫化铜矿电化学调控浮选应用与研究进展[J].矿冶, 2016, 25(5):15-18. doi: 10.3969/j.issn.1005-7854.2016.05.004

    CrossRef Google Scholar

    [4] 耿连胜.控制矿浆电位提高铜浮选回收率的研究[J].矿业快报, 2001(9):13-15.

    Google Scholar

    [5] 史玲.无捕收剂电化学浮选技术研究[J].中国钼业, 2004, 28(6):19-22. doi: 10.3969/j.issn.1006-2602.2004.06.005

    CrossRef Google Scholar

    [6] PLACKOWSKI, C., W.J. BRUCKARD, A.V. Nguyen. Surface characterisation, collector adsorption and flotation response of enargite in a redox potential controlled environment[J]. Minerals Engineering, 2014, 65: 61-73.

    Google Scholar

    [7] 孙传尧, 王福良, 师建忠, 等.蒙古额尔登特铜矿的电化学控制浮选研究与实践[J].矿冶, 2001, 10(1):20-26.

    Google Scholar

    [8] V·帕那亚托夫, 魏明安, 肖力子, 等.铜锌浮选的电化学处理技术[J].国外金属矿选矿, 2000(11):39-40.

    Google Scholar

    [9] 赵美法, 巯基乙酸的生产及应用[J].中国氯碱, 2004(6):15-16. doi: 10.3969/j.issn.1009-1785.2004.06.007

    CrossRef Google Scholar

    [10] 秦伟程, 巯基乙酸技术进展与发展趋势[J].广西化工, 2002(1):30-32.

    Google Scholar

    [11] 胡岳华, 王淀佐, 浮选溶液化学[M].1988, 长沙: 湖南科学技术出版社.132-324.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Tables(4)

Article Metrics

Article views(1284) PDF downloads(42) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint