Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2020 Vol. 40, No. 5
Article Contents

RAN Jianfeng, LV Peng, YAO Jiashu, LI Yali, ZHANG Liangjing, YIN Shaohua, ZHANG Libo. Research Progress of Microwave Heating in Rare Earth Metallurgy and New Material Synthesis[J]. Conservation and Utilization of Mineral Resources, 2020, 40(5): 37-43. doi: 10.13779/j.cnki.issn1001-0076.2020.05.006
Citation: RAN Jianfeng, LV Peng, YAO Jiashu, LI Yali, ZHANG Liangjing, YIN Shaohua, ZHANG Libo. Research Progress of Microwave Heating in Rare Earth Metallurgy and New Material Synthesis[J]. Conservation and Utilization of Mineral Resources, 2020, 40(5): 37-43. doi: 10.13779/j.cnki.issn1001-0076.2020.05.006

Research Progress of Microwave Heating in Rare Earth Metallurgy and New Material Synthesis

More Information
  • The development and current applications of microwave heating in the field of rare earth metallurgy and new material synthesis are reviewed. It is found that microwave heating directly heats the materials through material energy dissipation, and has the advantages of high heating efficiency, high energy utilization, significantly improving product performance, and so on. As a new heating mode, microwave heating is attracted more and more attention, with the development of research, it would play an important role in the fields of rare earth metallurgy and new material synthesis, and has wide application prospects.

  • 加载中
  • [1] SADRI F, NAZARI AM, GHAHREMAN A. A review on the cracking, baking and leaching processes of rare earth element concentrates[J]. Rare Earth, 2017, 35(8):739-752.

    Google Scholar

    [2] 陶春.中国稀土资源战略研究[D].北京: 中国地质大学, 2011.

    Google Scholar

    [3] LI M, LI JF, ZHANG DL, et al. Decomposition of Mixed Rare Earth Concentrate by NaOH Roasting and Kinetics of Hydrochloric Acid Leaching Process[J]. Journal of Rare Earths, 2019, 38(9):1019-1029.

    Google Scholar

    [4] WYSOCKA I. Determination of rare earth elements concentrations in natural waters-a review of ICP-MS measurement approaches[J]. Talanta, 2020, 221:121636.

    Google Scholar

    [5] LI DQ. Development course of separating rare earths with acid phosphorus extractants:A critical review[J]. Journal of Rare Earths, 2019, 37(5):468-486.

    Google Scholar

    [6] WANG XB, YAO MT, LI JS, et al. Global Embodied Rare Earths Flows and the Outflow Paths of China's Embodied Rare Earths:Combining Multi-Regional Input-Output Analysis with the Complex Network Approach[J]. Journal of Cleaner Production, 2019, 216:435-445.

    Google Scholar

    [7] 刘海力, 马晓茜, 郭平生, 等.餐厨垃圾的微波干燥特性及动力学模型[J].科学通报, 2014, 59(10):936-942.

    Google Scholar

    [8] 丁泽智, 杨晚生.微波加热技术的现状与发展分析[J].南方农机, 2019, 50(5):152.

    Google Scholar

    [9] 王永洪, 陈旭国, 赵海波, 等.微波技术在橡胶加工中的应用研究进展[J].热带农业科学, 2007, 27(6):59-63.

    Google Scholar

    [10] 刘书祯, 白燕, 程艳明, 等.微波技术在冶金中的应用[J].湿法冶金, 2011, 30(2):91-94.

    Google Scholar

    [11] LI SC, YUE XH. Application of Microwave in Mineral processing[J]. Metal Mine, 2006, 156(4):155-162.

    Google Scholar

    [12] 金钦汉, 戴树珊, 黄卡玛.微波化学[M].北京:科学出版社, 1999.

    Google Scholar

    [13] 王彪.微波加热过程中热点效应的试验与模拟研究[D].山东: 山东大学, 2017.

    Google Scholar

    [14] JONES DA, LELYVELD TP, MAVROFLDIS SD, et al. Microwave heating applications in environmental engineering-a review[J]. Resources Conservation & Recycling, 2002, 32(4):75-90.

    Google Scholar

    [15] 邓秀文.吸波材料研究进展[J].化工时刊, 2007, 21(8):58-65.

    Google Scholar

    [16] 杨瑾.微波加热与传统加热方式的异同[J].工程机械与维修, 2006(4):89-90.

    Google Scholar

    [17] 刘晨辉.基于冶金物料介电特性的微波加热应用新工艺研究[D].昆明: 昆明理工大学, 2014.

    Google Scholar

    [18] ZHONG CB, XU CL, LYU RL, et al. Enhancing mineral liberation of a Canadian rare earth ore with microwave pretreatment[J]. Journal of Rare Earths, 2018, 36(2):215-224.

    Google Scholar

    [19] HUANG YK, ZHANG TA, LIU J, et al. Decomposition of the mixed rare earth concentrate by microwave-assisted method[J]. Journal of Rare Earths, 2016, 34(5):529-535.

    Google Scholar

    [20] 许延辉, 马升峰, 郭文亮, 等.微波场中氟碳铈矿和独居石混合稀土精矿的升温特性研究[J].冶金工程, 2019, 6(2):89-97.

    Google Scholar

    [21] 李解, 李成元, 李保卫, 等.微波加热低品位稀土精矿酸浸实验研究[J].稀有金属, 2014, 38(5):839-845.

    Google Scholar

    [22] SHUKLA N, DHAWAN N. Rapid microwave processing of discarded tubular lights for extraction of rare earth values[J]. Process Safety and Environmental Protection, 2020, 142:238-249.

    Google Scholar

    [23] HUANG YK, ZHANG TA, DOU ZH, et al. Influence of microwave heating on the extractions of fluorine and Rare Earth elements from mixed rare earth concentrate[J]. Hydrometallurgy, 2016, 162:104-110.

    Google Scholar

    [24] LIE J, ISMADJI S, LIU JC. Microwave-assisted leaching of rare earth elements (Y and Eu) from waste cathode ray tube phosphor[J]. Journal of Chemical Technology and Biotechnology, 2019, 94(12):3859-3865.

    Google Scholar

    [25] 彭金辉, 夏洪应.微波冶金[M].北京:科学出版社, 2016:102-108.

    Google Scholar

    [26] 尹少华, 林国, 彭金辉, 等.响应曲面法优化微波干燥碳酸稀土的实验研究[J].稀有金属, 2016, 40(4):350-355.

    Google Scholar

    [27] 黎峰, 卢铁城, 马奔原, 等.微波干燥对YAG纳米粉体分散性和粒径的影响[J].四川大学学报(自然科学版), 2012, 49(2):413.

    Google Scholar

    [28] 李解, 王少炳, 李保卫, 等.微波辅助硫酸低温焙烧稀土精矿试验研究[J].稀土, 2013, 34(6):45-50.

    Google Scholar

    [29] 王少炳.微波辅助浓硫酸低温焙烧稀土精矿的实验研究[D].包头: 内蒙古科技大学, 2013.

    Google Scholar

    [30] CHEN KH, PENG JH, SRINIVASAKANNAN C, et al. Effect of Temperature on the Preparation of Yttrium Oxide in Microwave Field[J]. Journal of Alloys and Compounds, 2018, 742:13-19.

    Google Scholar

    [31] CHEN KH, GUO SH, ZENG YQ, et al. Facile preparation and characterization of lanthanum oxide powders by the calcination of lanthanum carbonate hydrate in microwave field[J]. Ceramics International, 2020, 46(1):165-170.

    Google Scholar

    [32] 欧阳成, 周蓉, 荆旭冬.微波-超声波协同作用下氧化铈的制备与表征[J].湿法冶金, 2014, 33(4):305-308.

    Google Scholar

    [33] 曾青云, 郭守金, 薛丽燕, 等.外场辅助制备低氯氧化镧前驱体[J].有色金属科学与工程, 2018, 9(5):7-13.

    Google Scholar

    [34] YIN SH, CHEN KH, SRINIVASAKANNAN C, et al. Enhancing recovery of ammonia from rare earth wastewater by air stripping combination of microwave heating and high gravity technology[J]. Chemical Engineering Journal, 2018, 337:515-521.

    Google Scholar

    [35] LAN X, GAO JT, DU Y, et al. Effect of super gravity on successive precipitation and separation behaviors of rare earths in multi-components rare-earth system[J]. Separation and Purification Technology, 2019, 228.

    Google Scholar

    [36] 江静华, 方峰, 谈淑泳, 等.稀土元素及稀土新材料[J].2000(3): 45-48.

    Google Scholar

    [37] COEY JMD. Perspective and Prospects for Rare Earth Permanent Magnets[J]. Engineering, 2020, 6(2):42-68.

    Google Scholar

    [38] 刘博林.稀土发光材料的研究进展[D].吉林: 东北师范大学, 2008.

    Google Scholar

    [39] BI JW, SUN LX, WEI QM, et al. Rapid ultrasonic-microwave assisted synthesis of Eu3+ doped Y2O3 nanophosphors with enhanced luminescence properties[J]. Nanotechnology Weekly, 2020, 9(5):9523-9530.

    Google Scholar

    [40] CHANDEKAR KV, KHAN A, ALSHAHRANI T, et al. Novel rare earth Dy doping impact on physical properties of PbI2 nanostructures synthesized by microwave route for optoelectronics[J]. Materials Characterization, 2020:110688.

    Google Scholar

    [41] 李娴, 叶旭, 张洪强.稀土掺杂钨酸盐发光材料的微波固相合成及发光性能研究[J].广东化工, 2015, 42(17):18-19, 35.

    Google Scholar

    [42] 韩英.稀土离子掺杂的钼酸钙基发光材料的微波合成及其性能研究[D].河北: 河北大学, 2017.

    Google Scholar

    [43] 周先波, 崔晴, 沈海峰, 等.氧化锌/铈纳米材料的微波合成及其光催化性能研究[J].化工新型材料, 2019, 47(8):148-152, 157.

    Google Scholar

    [44] 陈洪亮.稀土氧化物纳米材料的超声(微波)合成及其催化性能研究[D].南京: 南京大学, 2006.

    Google Scholar

    [45] ALKETBI M, POLYEHRONOPOULOU K, ZEDAN AF, et al. Tuning the activity of Cu-containing rare earth oxide catalysts for CO oxidation reaction:Cooling while heating paradigm in microwave-assisted synthesis[J]. Materials Research Bulletin, 2018, 108:142-150.

    Google Scholar

    [46] CHENG J, SONG LY, WU R, et al. Promoting effect of microwave irradiation on CeO2-TiO2 catalyst for selective catalytic reduction of NO by NH3[J]. Journal of Rare Earths, 2020, 38(1):59-69.

    Google Scholar

    [47] 杨建利, 晏志军, 张润兰, 等.加入柠檬酸微波合成超微分子筛[J].应用化工, 2010, 39(12):1868-1870.

    Google Scholar

    [48] 彭森, 盛安妮.微波加热技术在烧结陶瓷材料中的应用分析[J].环球市场, 2019(27):386.

    Google Scholar

    [49] 丁明桐, 杜先智, 陈凡, 等.Y-ZrO2稀土增韧陶瓷的微波烧结[J].安徽师范大学学报(自然科学版), 2000(4):344-347.

    Google Scholar

    [50] TANG Z, HUANG ZY, HAN W, et al. Microwave-assisted synthesis of uranium doped Y2Zr2O7 transparent ceramics as potential near-infrared optical lens[J]. Scripta Materialia, 2020, 178:90-93.

    Google Scholar

    [51] AHMAD S, MAHMOUD MM, SEIFERT HJ. Crystallization of two rare-earth aluminosilicate glass-ceramics using conventional and microwave heat-treatments[J]. Journal of Alloys and Compounds, 2019, 797:45-57.

    Google Scholar

    [52] 杨玉梅.稀土永磁材料的研究与应用[J].中国粉体工业, 2020(2):27-30.

    Google Scholar

    [53] 葛海.微波磁场烧结NdFeB磁体的工艺与性能研究[D].武汉: 武汉理工大学, 2004.

    Google Scholar

    [54] 李丽娅, 易健宏, 彭元东.钐钴基稀土永磁材料的微波时效处理方法: CN104233138A[P].2014-12-24.

    Google Scholar

    [55] 殷毅.稀土超磁致伸缩材料及其应用研究现状[J].磁性材料及器件, 2018, 49(3):57-60.

    Google Scholar

    [56] BHONGALE SR, INGAWALE HR, SHINDE TJ, et al. Effect of Nd3+ substitution on structural and magnetic properties of Mg-Cd ferrites synthesized by microwave sintering technique[J]. Journal of Rare Earths, 2018, 36(4):390-397.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Article Metrics

Article views(2056) PDF downloads(30) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint