Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2020 Vol. 40, No. 3
Article Contents

WANG Ziyan, ZHONG Haotian, JIA Yu, SI Jiwen, ZHU Fujie, MIAO Shiding. Analysis of Current Status of Continuous Basalt Fiber Production and Product Development[J]. Conservation and Utilization of Mineral Resources, 2020, 40(3): 161-178. doi: 10.13779/j.cnki.issn1001-0076.2020.03.025
Citation: WANG Ziyan, ZHONG Haotian, JIA Yu, SI Jiwen, ZHU Fujie, MIAO Shiding. Analysis of Current Status of Continuous Basalt Fiber Production and Product Development[J]. Conservation and Utilization of Mineral Resources, 2020, 40(3): 161-178. doi: 10.13779/j.cnki.issn1001-0076.2020.03.025

Analysis of Current Status of Continuous Basalt Fiber Production and Product Development

More Information
  • Continuous basalt fiber (CBF) is made from natural basalt ore at high temperatures. Due to the fact that CBF is much longer than asbestos fiber, and is not easily inhaled by lungs, the CBF was believed as an eco-friendly and sustainable green material. Compared with glass fiber, CBF has excellent alkali resistance, wide temperature resistance, high strength, heat insulation and high dielectric properties. However, the current CBF production is not high, there are many reasons, including raw materials, equipment, processes and many other problems. This review gives the empirical rules of the influence of SiO2, Al2O3, FeO+Fe2O3 and other main components on the drawing process in CBF raw materials, and analyzes the influencing factors such as leakage plate, kiln homogenization, sizing agent and melting technology, which makes the reader understand the CBF production process. At the same time, this paper introduces the status of basalt resources and CBF industry, CBF composite material research and CBF application fields. The content includes not only traditional fields such as construction, fire and heat insulation, but also high-tech fields such as lightweight of automobile, filtration and environmental protection and electronic technology. Finally, the problems existing in the development of CBF in China are briefly described and the prospects are given.

  • 加载中
  • [1] 陈德茸.连续玄武岩纤维的发展与应用[J].高科技纤维与应用, 2014, 39(6):17-20.

    Google Scholar

    [2] TANG M, LI JQ, LIU HL, et al. Basalt fiber reinforce cement-based composite materials[J]. Advanced Materials Research, 2012, 374-377:1837-1842.

    Google Scholar

    [3] 居志纲, 施李萍, 孙丽华, 等.玄武岩纤维加强件在光缆上的应用[J].现代传输, 2014(1):78-81.

    Google Scholar

    [4] 华康.连续玄武岩纤维复合材料船体抗爆性能分析[D].上海: 上海交通大学, 2009.http://cdmd.cnki.com.cn/Article/CDMD-10248-2009225639.htm

    Google Scholar

    [5] DHAND V, MITTAL G, RHEE KY, et al. A short review on basalt fiber reinforced polymer composites[J]. Composites Part B:Engineering, 2015, 73:166-180.

    Google Scholar

    [6] 赵振兴.超细玻璃纤维针刺复合滤料的耐高温性能研究[D].青岛: 青岛大学, 2014.

    Google Scholar

    [7] 张健, 张洪春.筠连县.长远谋划"12456"抓实转型发展之路[J].中国西部, 2014(38):120-123.

    Google Scholar

    [8] 孟欣, 田学勤, 白云峰.我国玄武岩纤维产业发展现状和发展前景分析[J].建材发展导向(下), 2019, 17(10):9-12.

    Google Scholar

    [9] 吴光存.论山西省大同市玄武岩地质特征、资源概况及开发前景[J].华北国土资源, 2013(3):110-112.

    Google Scholar

    [10] 胡显奇.把握时机抢占高性能纤维发展高地——刍议我国连续玄武岩纤维产业发展[J].新材料产业, 2012(6):40-44.

    Google Scholar

    [11] 朱巍, 芦春凡, 岳增蕾, 等.玄武岩纤维专利分析[J].科技创新与应用, 2017(8):72.

    Google Scholar

    [12] 我国纯天然连续玄武岩纤维异军突起.[EB/OL]. (2006-08-18)[2019-09-12]. http://www.cnbxfc.net.

    Google Scholar

    [13] 周歧刚.基于VEE的玄武岩纤维拉丝池窑温度监控系统设计[J].化工设计通讯, 2015, 41(6):22-24.

    Google Scholar

    [14] 李红杰, 赵世海, 张新建.连续玄武岩纤维的研究进展及其应用[J].装备制造技术, 2016(11):256-259.

    Google Scholar

    [15] 刘长雷.我国玄武岩纤维发展现状及存在的主要问题[J].中国纤检, 2011(15):69-70.

    Google Scholar

    [16] 郑宁来.玄武岩连续纤维中试投运[J].合成纤维工业, 2018, 41(5):34.

    Google Scholar

    [17] 申桂英.我国连续玄武岩纤维池窑化生产实现重大突破[J].精细与专用化学品, 2019, 27(5):33.

    Google Scholar

    [18] 郝立才, 于伟东.玄武岩/玻璃纤维形态结构和热稳定性对比研究[J].西安工程大学学报, 2009, 23(2):327-332.

    Google Scholar

    [19] 梁磊, 梁玉舫, 李谨.玄武岩纤维物化性能的研究[J].玻璃纤维, 2006(1):21-25.

    Google Scholar

    [20] 叶鼎诠.玄武岩纤维与玻璃纤维的比较[J].上海建材, 2006(6):8-9.

    Google Scholar

    [21] 吴永坤, 李勇, 杨勇, 等.玄武岩中全铁分析方法的比较与研究[J].玻璃纤维, 2013(5):4-8.

    Google Scholar

    [22] 谢雨凌.玄武岩纤维增强铝基复合材料的制备及性能研究[D].上海: 上海交通大学, 2013.https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CMFD&filename=1013022215.nh

    Google Scholar

    [23] 胡显奇.我国"十三五"连续玄武岩纤维产业发展规划探讨[C]//中国纺织工程学会.中国工程科技论坛暨2015年(萧山)中国纺织工程学会化纤专业委员会学术年会论文集.萧山: 中国工程院环境与纺织工程学部, 2015: 7-16.

    Google Scholar

    [24] 王屹, 余骁, 张建军, 等.玄武岩纤维的开发及应用[J].玻璃纤维, 2017(4):28-31.

    Google Scholar

    [25] 王岚, 陈阳, 李振伟.连续玄武岩纤维及其复合材料的研究[J].玻璃钢复合材料, 2000(6):22-24.

    Google Scholar

    [26] 吴佳林.连续玄武岩纤维的研究进展及应用[J].化纤与纺织技术, 2012, 41(3):38-41.

    Google Scholar

    [27] JAMSHAID H, MISHRA R. A green material from rock:basalt fiber-a review[J]. Journal of the Textile Institute Proceedings and Abstracts, 2016, 107(7):15.

    Google Scholar

    [28] FIORE V, SCALICI T, BELLA GD, et al. A review on basalt fiber and its composites[J]. Composites Part B:Engineering, 2015, 74:74-94.

    Google Scholar

    [29] 欧阳利军, 丁斌, 陆洲导.玄武岩纤维及其在建筑结构加固中的应用研究进展[J].玻璃钢/复合材料, 2010(3):84-88.

    Google Scholar

    [30] 石钱华.国外连续玄武岩纤维的发展及其应用[J].玻璃纤维, 2003(4):27-31.

    Google Scholar

    [31] SIM J, PARK C, MOON DY. Characteristics of basalt fiber as a strengthening material for concrete structures[J]. Composites Part B:Engineering, 2005, 36(6-7):504-512.

    Google Scholar

    [32] 胡显奇, 罗益锋, 申屠年.玄武岩连续纤维及其复合材料[J].高科技纤维与应用, 2002, 27(2):1-5, 11.

    Google Scholar

    [33] 李福洲, 李贵超, 王浩明, 等.玄武岩纤维纱线的耐高温性能研究[J].功能材料, 2015(3):63-66.

    Google Scholar

    [34] 陈菁, 顾轶卓, 杨中甲, 等.高温处理对几种玄武岩纤维成分和拉伸性能的影响[J].材料工程, 2017, 45(6):61-66.

    Google Scholar

    [35] 钟晨.连续玄武岩纤维复合材料船体结构力学性能分析[D].上海: 上海交通大学, 2007.http://d.wanfangdata.com.cn/thesis/D029181

    Google Scholar

    [36] 李典庆, 张圣坤.水面舰船生命力研究现状及方向概述[J].造船技术, 2003(5):1-4.

    Google Scholar

    [37] 罗松林, 叶序双, 顾文彬, 等.水下爆炸研究现状[J].工程爆破, 1999, 5(1):84-87.

    Google Scholar

    [38] FAMME JB, TAYLOR B. Integration of ship control systems for total ship survivability[J]. Naval Engineers Journal, 1992(2):210-218.

    Google Scholar

    [39] MOROVA N. Investigation of usability of basalt fibers in hot mix asphalt concrete[J]. Construction and Building Materials, 2013, 47(10):175-180.

    Google Scholar

    [40] IVANITSKⅡ SG, GORBACHEV GF. Continuous basalt fibers:production aspects and simulation of forming processes. I. State of the art in continuous basalt fiber technologies[J]. Powder Metallurgy and Metal Ceramics, 2011, 50(3-4):125-129.

    Google Scholar

    [41] Basalt Fiber & Composite Materials Technology Development. Basalt continuous fiber: development of technologies and equipment from the past to the present.[EB/OL]. (2008-12-15)[2019-12-09]. http://basaltfm.com/cn/articles/article01.html.

    Google Scholar

    [42] 胡显奇, 董国义, 鄢宏.玄武岩纤维在建筑和基础设施中的应用[J].工业建筑, 2004, 34(z1):21-26.

    Google Scholar

    [43] 林智荣, 姚立宁, 施斌, 等.玄武岩连续纤维混凝土动力性能的试验研究[C]//中国土木工程学会.第十一届全国纤维混凝土学术会议论文集纤维混凝土的技术进展与工程应用.大连: 深圳海川工程科技有限公司, 2006: 9-20.

    Google Scholar

    [44] 廉杰, 杨勇新, 杨萌等.短切玄武岩纤维增强混凝土力学性能的试验研究[J].工业建筑, 2007(6):8-10.

    Google Scholar

    [45] 王兴舟, 鲍亚文, 房园, 王斌.纤维对混凝土的阻裂和增强作用性能研究[J].吉林交通科技, 2008(1):10-14.

    Google Scholar

    [46] 沈刘军, 许金余, 李为民等.玄武岩纤维增强混凝土静、动力性能试验研究[J].混凝土, 2008(4):66-69.

    Google Scholar

    [47] 李光伟.玄武岩纤维在水工抗冲蚀高性能混凝土中的应用[J].混凝土, 2008(11):77-79.

    Google Scholar

    [48] 曹海琳, 郎海军, 孟松鹤.连续玄武岩纤维结构与性能试验研究[J].高科技纤维与应用, 2007, 32(5):8-13.

    Google Scholar

    [49] 冯建民, 吴海波.玄武岩纤维复合针刺过滤材料耐酸碱性能对比研究[J].非织造布, 2011, 19(2):15-17.

    Google Scholar

    [50] 袁忠月, 王超会, 刘剑虹.玄武岩纤维耐酸碱性能的研究[J].科技致富向导, 2012(20):96-97.

    Google Scholar

    [51] 姚勇, 徐鹏, 刘静, 等.国内外玄武岩纤维耐腐蚀性能对比研究[J].合成纤维工业, 2015, 38(5):9-11, 15.

    Google Scholar

    [52] 王明超, 张佐光, 孙志杰, 等.连续玄武岩纤维及其复合材料耐腐蚀特性[J].北京航空航天大学学报, 2006(10):133-136.

    Google Scholar

    [53] 王宁, 侯书恩, 靳洪允.酸处理对玄武岩纤维微观结构和力学性能的影响[J].功能材料, 2013, 44(01):84-87.

    Google Scholar

    [54] 顾期斌.热处理对连续玄武岩纤维化学性质的影响[J].湖北教育学院学报, 2007, 24(2):49-52.

    Google Scholar

    [55] 魏斌.玄武岩纤维的化学稳定性能及其涂层改性研究[D].哈尔滨: 哈尔滨工业大学, 2011.http://cdmd.cnki.com.cn/Article/CDMD-10213-1012000511.htm

    Google Scholar

    [56] 余鹏程.玄武岩/PPS针刺复合滤料的制备及性能研究[D].杭州: 浙江理工大学, 2013.http://cdmd.cnki.com.cn/Article/CDMD-10338-1013289301.htm

    Google Scholar

    [57] 樊霆, 童庆, 叶文玲, 等.玄武岩纤维矿物组成形态及熔融析晶特性[J].中南大学学报(自然科学版), 2013(10):4307-4311.

    Google Scholar

    [58] 吴智深, 刘建勋.一种用于连续玄武岩纤维大规模生产的池窑: CN203768205U[P], 2014-08-13.

    Google Scholar

    [59] 董世成.年产5000吨玄武岩连续纤维生产用池窑.中国: CN202945143U[P], 2013-05-22.

    Google Scholar

    [60] 于守富, 唐秀凤, 吴嘉培, 等.生产玄武岩连续纤维的大型火电结合池窑.中国: CN102992581A[P], 2013-03-27.

    Google Scholar

    [61] 陈自力.用于玄武岩纤维连续拉丝的漏板: CN205368141U[P], 2016-07-06.

    Google Scholar

    [62] 李红杰, 赵世海, 张新建.连续玄武岩纤维的研究进展及其应用[J].装备制造技术, 2016(11):256-259.

    Google Scholar

    [63] 李建军, 党新安.玄武岩连续纤维成形工艺研究[J].材料科学与工艺, 2009, 17(2):211-214.

    Google Scholar

    [64] KUZMIN KL, ZHUKOVSKAYA ES, GUTNIKOV SI, et al. Effects of ion exchange on the mechanical properties of basaltic glass fibers[J]. International Journal of Applied Glass Science, 2016, 7(1):118-127.

    Google Scholar

    [65] GUTNIKOV SI, MALAKHO AP, LAZORYAK BI, et al. Influence of alumina on the properties of continuous basalt fibers[J]. Russian Journal of Inorganic Chemistry, 2009, 54(2):191-196.

    Google Scholar

    [66] 李建军, 张浩, 刘艳春.玄武岩纤维原矿的化学成分和物相分析[J].玻璃纤维, 2007(6):18-21.

    Google Scholar

    [67] 谢尔盖, 李中郢.玄武岩纤维材料的应用前景[J].纤维复合材料, 2003, 20(3):17-20.

    Google Scholar

    [68] TATARINTSEVA OS, KHODAKOVA NN, UGLOVA TK. Effect of iron oxides on the proneness of synthesized basaltic metals toward fiber formation[J]. Glass & Ceramics, 2012, 69(1-2):71-74.

    Google Scholar

    [69] PARMAR M, MANKODI H. Basalt fiber:newer fiber for FRP composites[J]. International Journal of Emerging Technologies in Engineering Research (IJETER), 2016, 4(7):43-45.

    Google Scholar

    [70] KIM JS, LIM JH, HUH Y. Melt-spinning basalt fibers based on dielectric heating and steady-state process characteristics[J]. Fibers and Polymers, 2013, 14(7):1148-1156.

    Google Scholar

    [71] 闫全英.玄武岩纤维制备的热工机理和材料研究[D].哈尔滨: 哈尔滨工业大学, 2000.http://d.wanfangdata.com.cn/thesis/Y392207

    Google Scholar

    [72] 唐明, 邓泓霞等.一种玄武岩纤维耐腐蚀复合预埋件的制备方法: CN106113520A[P].2016-11-16.

    Google Scholar

    [73] 王萍, 吴海波, 靳向煜.玄武岩纤维过滤材料的研究[J].非织造布, 2010, 18(3):19-22.

    Google Scholar

    [74] SARAVANAN D. Spinning the rocks-Basalt fibres[J]. Journal of the Institution of Engineers (India), Part TX:Textile Engineering Division, 2006, 86:39-45.

    Google Scholar

    [75] 刘津, 宁伟, 汪庆卫, 等.电熔法制备连续玄武岩纤维及其复合材料的性能探讨[J].玻璃与搪瓷, 2016, 44(3):1-7.

    Google Scholar

    [76] 林希宁, 张凤林, 周玉梅.玄武岩纤维及其复合材料的研究进展[J].玻璃纤维, 2013(2):43-48.

    Google Scholar

    [77] CARETTO F, LAERA AM, NUZZO FD, et al. Molybdenum disilicide-silicon nitride bushing nozzles tailor-made for basalt fibers production[J]. Ceramics International, 2016, 42(10):11844-11850.

    Google Scholar

    [78] POPOVSKIJ VM, TETERIN AM, ELTSOV AB, et al. Process of production of miner fiber (variants) and gear for its realization: RU2211193[P]. 2003-08-27.

    Google Scholar

    [79] 胡显奇, 申屠年.连续玄武岩纤维在军工及民用领域的应用[J].高科技纤维与应用, 2005, 30(6):7-13.

    Google Scholar

    [80] 姜雪.玄武岩连续纤维专用浸润剂的研究[D].哈尔滨: 哈尔滨工业大学, 2009.http://cdmd.cnki.com.cn/Article/CDMD-10213-2010026427.htm

    Google Scholar

    [81] 初琪.玄武岩连续纤维浸润剂研制及其对纤维性能的影响[D].哈尔滨: 哈尔滨工业大学, 2010.http://cdmd.cnki.com.cn/Article/CDMD-10213-1011262157.htm

    Google Scholar

    [82] 胡显奇.我国连续玄武岩纤维产业的特征及可持续发展[J].高科技纤维与应用, 2012, 37(6):19-24.

    Google Scholar

    [83] 刘攀, 永林.纤维混凝土研究进展[J].建筑工程技术与设计, 2015(32):1556-1556.

    Google Scholar

    [84] 金友信.玄武岩纤维组成及优异性能[J].山东纺织科技, 2010(2):37-40.

    Google Scholar

    [85] SWINK M. Cotinuous filament basalt: a unique fibre capable of leadership in high temperature applications[R]. Atlanta, GA, USA: Techtextile North America Symposium, 2002.

    Google Scholar

    [86] YING S, ZHOU X. Chemical and thermal resistance of basalt fiber in inclement environments[J]. Journal of Wuhan University of Technology (Materials Science Edition), 2013, 28(03):560-565.

    Google Scholar

    [87] 齐风杰, 李锦文, 李传校, 等.连续玄武岩纤维研究综述[J].高科技纤维与应用, 2006, 31(2):42-46.

    Google Scholar

    [88] 陈阳, 王岚, 李振伟.玄武岩纤维性能及应用[J].新型建筑材料, 2000(8):28-31.

    Google Scholar

    [89] 胡微微.一种玄武岩纤维/粉体改性木质复合材料的开发[D].天津: 天津工业大学, 2011.http://d.wanfangdata.com.cn/thesis/Y2059485

    Google Scholar

    [90] GAO Y Q, JIA C, MENG L, et al. Heat resistance study of basalt fiber material via mechanical tests[J]. Materials Science and Engineering, 2017, 283(1):1-7.

    Google Scholar

    [91] 刘学慧.连续玄武岩纤维与碳纤维、芳纶、玻璃纤维的对比及其特性概述[J].山西科技, 2014, 29(1):87-90.

    Google Scholar

    [92] 赵东瑾.超高分子量聚乙烯纤维与连续玄武岩纤维[J].纺织科学研究, 2017(5):70-76.

    Google Scholar

    [93] 沈奇真, 嵇绍华.化学腐蚀对玄武岩纤维与玻璃纤维拉伸性能的影响[J].中外公路, 2012(5):246-250.

    Google Scholar

    [94] 刘紫阳, 孙世伟, 张彦, 等.玄武岩纤维混凝土性能试验研究[J].城市建设理论研究:电子版, 2012(13):1-6.

    Google Scholar

    [95] 崔毅华.玄武岩连续纤维的基本特性[J].纺织学报, 2005, 26(5):120-121.

    Google Scholar

    [96] 王广健, 尚德库, 张楷亮, 等.改性玄武岩纤维及纤维复合过滤材料的微孔结构表征的研究[J].河北工业大学学报, 2003(5):6-11.

    Google Scholar

    [97] 杨小兵.连续玄武岩纤维复合材料制备技术研究[D].江苏: 江苏大学, 2009.http://cdmd.cnki.com.cn/Article/CDMD-10299-2009101646.htm

    Google Scholar

    [98] 宋秋霞, 刘华武, 钟智丽, 等.硅烷偶联剂处理对玄武岩单丝拉伸性能的影响[J].天津工业大学学报, 2010(1):19-22.

    Google Scholar

    [99] 卢国军, 王伟宏, 王海刚.改性玄武岩纤维增强木塑复合材料的研究[J].西南林业大学学报, 2014(2):89-94.

    Google Scholar

    [100] 郭昌盛, 杨建忠, 姚一军.连续玄武岩纤维改性方法的研究[J].高科技纤维与应用, 2015, 40(1):24-28.

    Google Scholar

    [101] 霍文静, 张佐光, 王明超, 等.复合材料用玄武岩纤维耐酸碱性试验研究[J].复合材料学报, 2007(6):77-82.

    Google Scholar

    [102] 颜贵龙, 梁小平, 吴畏, 等.玄武岩纤维表面改性研究[C]//中国纺织工程学会.铜牛杯第九届功能性纺织品及纳米技术研讨会论文集.盛泽: 纤维基复合材料国家工程研究中心, 2009.

    Google Scholar

    [103] 李伟娜.玄武岩纤维表面酸刻蚀处理对其复合材料性能的影响[D].北京: 北京林业大学, 2013.http://cdmd.cnki.com.cn/Article/CDMD-10022-1013213585.htm

    Google Scholar

    [104] 靳婷婷, 申士杰, 李静, 等.玄武岩纤维表面处理新方法-酸刻蚀处理的可行性研究[J].材料导报, 2014(12):116-118.

    Google Scholar

    [105] VARELIDIS PC, MCCULLOUGH RL, PAPASPYRIDES CD. The effect on the mechanical properties of carbon/epoxy composites of polyamide coatings on the fibers[J]. Composites Science and Technology, 1999, 59(12):1813-1823.

    Google Scholar

    [106] 傅宏俊, 马崇启, 王瑞.玄武岩纤维表面处理及其复合材料界面改性研究[J].纤维复合材料, 2007(3):11-13.

    Google Scholar

    [107] KANG YQ, CAO MS, SHI XL, et al. The enhanced dielectric from basalt fibers/nickel core-shell structures synthesized by electroless plating[J]. Surface & Coatings Technology, 2007(201):7201-7206.

    Google Scholar

    [108] 陈国荣, 曹海琳, 姜雪等.纳米SiO2表面改性玄武岩纤维的性能研究及作用机理[J].黑龙江大学自然科学学报, 2009(6):785-789.

    Google Scholar

    [109] 毕松梅, 朱钦钦, 赵堃, 等.等离子体改性对玄武岩/聚丙烯复合材料性能的影响[J].产业用纺织品, 2013(6):32-35.

    Google Scholar

    [110] WANG GJ, LIU YW. Surface modification and characterizations of basalt fibers with non-thermal plasma[J]. Surface & Coatings Technology, 2007(201):6565-6568.

    Google Scholar

    [111] 储长流, 周敏东, 方第超, 等.连续玄武岩纤维冷等离子改性处理性能研究[J].化工新型材料, 2013(8):89-91.

    Google Scholar

    [112] 朱钦钦.玄武岩纤维增强复合材料的制备及性能研究[D].芜湖: 安徽工程大学, 2013.http://cdmd.cnki.com.cn/article/cdmd-10363-1014155615.htm

    Google Scholar

    [113] 肖同亮, 李卓, 赵树高.连续玄武岩纤维表面改性方法研究进展[J].化工新型材料, 2016, 44(11):26-27.

    Google Scholar

    [114] 汪靖凯.玄武岩纤维/TiO2复合材料的制备及表征[J].材料科学与工艺, 2017, 25(2):79-84.

    Google Scholar

    [115] 王军.改性纳米TiO2/无纺玄武岩纤维复合光催化剂降解氨氮废水的研究[D].天津: 天津工业大学, 2017.http://cdmd.cnki.com.cn/Article/CDMD-10058-1017189211.htm

    Google Scholar

    [116] 蒙洁丽, 李光丰, 刘桂明, 等.氧化铝-玄武岩复合净水材料耐海水性能研究[J].轻工科技, 2017(7):35-36.

    Google Scholar

    [117] 王瑞华, 杨文麒, 李方舟, 等.玄武岩纤维增强聚苯硫醚的性能研究[J].塑料科技, 2017(5):36-40.

    Google Scholar

    [118] 邓鹏飞, 裴熙林, 王振兴, 等.玄武岩纤维/聚丙烯复合材料力学性能的研究[J].广州化工, 2017(3):54-56.

    Google Scholar

    [119] 邱菊生, 钟智丽, 石磊, 等.纤维组分比例对玄武岩/聚丙烯复合材料力学性能影响研究[J].天津工业大学学报, 2010, 29(1):23-26.

    Google Scholar

    [120] 郭振华, 尚德库, 梁金生, 等.海泡石对玄武岩纤维的改性研究[J].复合材料学报, 2004(6):137-142.

    Google Scholar

    [121] YANG YX, LIAN J. Basalt fiber reinforced concrete[J]. Advanced Materials Research, 2011, 194-196:1103-1108.

    Google Scholar

    [122] LI W, XU J. Mechanical properties of basalt fiber reinforced geopolymeric concrete under impact loading[J]. Materials Science and Engineering:A, 2009, 505(1-2):178-186.

    Google Scholar

    [123] JIANG CH, MCCARTHY TJ, CHEN D, et al. Influence of basalt fiber on performance of cement mortar[J]. Key Engineering Materials, 2010, 426-427:93-96.

    Google Scholar

    [124] PARK R, JANG J. Performance improvement of carbon fiber/polyethylene fiber hybrid composites[J]. Journal of Materials Science, 1999, 34(12):2903-2910.

    Google Scholar

    [125] CZIGÁNY T, VAD J, PÖLÖSKEI K. Basalt fiber as a reinforcement of polymer composites[J]. Periodica Polytechnica Mechanical Engineering, 2005, 49(1):3-14.

    Google Scholar

    [126] 方岩.聚乳酸/玄武岩纤维复合材料的制备及性能研究[D].长春: 吉林大学, 2012.http://www.cnki.com.cn/Article/CJFDTotal-SNSN201203009.htm

    Google Scholar

    [127] 王静.玄武岩纤维增强不饱和聚酯胶合工艺技术研究[D].北京: 北京林业大学, 2009.http://cdmd.cnki.com.cn/Article/CDMD-10022-2009161758.htm

    Google Scholar

    [128] ZHANG N, ZHONG ZL, LIU HW, et al. The research and development of continuous basalt fiber/polyester woven filter cloth[J]. Advanced Materials Research, 2011, 332-334:973-976.

    Google Scholar

    [129] 胡琳娜, 尚德库, 艾明星, 等.玄武岩纤维复合材料研究[J].河北工业大学学报, 2003, 32(2):71-76.

    Google Scholar

    [130] 关苏军.仿生轻量型玄武岩纤维增强木塑复合材料的开发[D].杭州: 浙江理工大学, 2011.http://cdmd.cnki.com.cn/article/cdmd-10338-1012297494.htm

    Google Scholar

    [131] 薛军鹏.连续玄武岩纤维混凝土技术研究进展及应用[J].福建建筑, 2009(12):36-38.

    Google Scholar

    [132] ACAR V, CAKIR F, ALYAMAÇ E, et al. 8-Basalt fibers[J]. Fiber Technology for Fiber-Reinforced Composites, 2017:169-185.

    Google Scholar

    [133] 吴剑青, 钟智丽.玄武岩纤维在汽车行业上的应用前景[J].产业用纺织品, 2012, 30(4):26-28.

    Google Scholar

    [134] 杨堃.玄武岩纤维在汽车轻量化中的应用[J].新材料产业, 2018, 299(10):32-36.

    Google Scholar

    [135] 四川力久知识产权服务有限公司.一种玄武岩纤维汽车尾气净化材料及其制备方法: CN201511018540.3[P].2016-06-15.

    Google Scholar

    [136] 宋倩倩.玄武岩纤维复合材料板簧结构设计与静动特性分析研究[D].长春: 吉林大学, 2018.http://cdmd.cnki.com.cn/Article/CDMD-10183-1018218155.htm

    Google Scholar

    [137] 王莎莎, 王庆国, 王凯, 等.玄武岩纤维在汽车外饰件上的应用研究[J].汽车工艺与材料, 2019, 365(5):16-19.

    Google Scholar

    [138] 王慧军, 惠林海, 丁笑晖, 等.玄武岩纤维增强复合材料板簧设计与制备[J].工程塑料应用, 2017, 45(8):65-69.

    Google Scholar

    [139] 含山县裕源金属制品有限公司.一种掺混玄武岩纤维的增强耐磨复合铝合金汽车零部件及其铸造工艺: CN201510374099.6[P].2015-12-16.

    Google Scholar

    [140] 李新娥.连续玄武岩纤维的研发及其应用[C]//中国纺织工程学会.第8届功能性纺织品及纳米技术研讨会论文集.宁波, 2008: 4-18.

    Google Scholar

    [141] 刘金刚, 张秀敏, 任卫卫等.玄武岩纤维增强聚酰亚胺复合材料及其在电工绝缘领域中的应用进展[J].绝缘材料, 2016, 49(12):19-27.

    Google Scholar

    [142] 刘元军, 孙嘉瑞, 叶美晨等.石墨涂层厚度对双层涂层玄武岩纤维织物电磁性能和力学性能的影响[J].纺织科学与工程学报, 2018, 35(4):1-5.

    Google Scholar

    [143] 瞿业明, 张伟, 葛乐.玄武岩纤维在输电线路中的应用探讨[J].电工技术, 2010(12):14, 19.

    Google Scholar

    [144] 沈晓梅, 刘华武, 刘长雷.玄武岩纤维的发展及其应用[J].山东纺织科技, 2007, 3:48-51.

    Google Scholar

    [145] 王向钦, 徐广标, 王敏.玄武岩纤维及其过滤材料发展现状[C]//华南理工大学.海峡两岸产业用纺织材料技术创新与人才培养论坛论文集.广州, 2013: 9-26.

    Google Scholar

    [146] 吕海荣, 杨彩云.玄武岩纤维用于过滤材料的探讨[J].产业用纺织品, 2010, 28(6):31-34.

    Google Scholar

    [147] ATUTIS E, VALIVONIS J, ATUTIS M. Experimental study of concrete beams prestressed with basalt fiber reinforced polymers under cyclic load[J]. Composite Structures, 2017, 183:389-396.

    Google Scholar

    [148] 张燕, 田风.玄武岩连续纤维的性能与应用[J].中国个体防护装备, 2004, 12(6):13-15.

    Google Scholar

    [149] RAMAKRISHNAN V, TOLMARE NS, BRIK VB. Performance evaluation of 3-D basalt fiber reinforced concrete and basalt rod reinforced concrete[R]. Washington, DC:Transportation Research Board, 1998.

    Google Scholar

    [150] DIAS DP, THAUMATURGO C. Fracture toughness of geopolymeric concretes reinforced with basalt fibers[J]. Cement and Concrete Composites, 2005, 27:49-54.

    Google Scholar

    [151] 赵中华, 刘晓波, 侯新月, 等.玄武岩纤维在混凝土中的应用[J].低温建筑技术, 2011, 33(7):5-7.

    Google Scholar

    [152] 佚名.玄武岩纤维复合筋及玄武岩纤维混凝土在季冻区桥梁工程中的推广应用[J].吉林交通科技, 2015, 38(2):38-39.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(11)

Article Metrics

Article views(4769) PDF downloads(455) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint