Citation: | YAN HaiJun, LUO Xianping, ZHU Xianwen, WENG Cunjian, ZHANG Wenpu, FENG Bo. Research Progress on Talc Inhibitors in Sulfide Ore Flotation[J]. Conservation and Utilization of Mineral Resources, 2020, 40(1): 138-144. doi: 10.13779/j.cnki.issn1001-0076.2020.01.016 |
Many sulphide ore often coexist with magnesium silicate minerals such as talc. Due to its good floatability, talc causes difficulties in flotation separation of sulfide ore, affecting the comprehensive index of sulfide ore dressing. For such sulfide ore, it is often achieved by inhibiting talc. Flotation separation, so it is of great significance to study talc inhibitors and their mechanism of action. In this paper, the research progress of talc inhibitors is reviewed. The talc inhibitors are classified into inorganic and organic. Inorganic inhibitors such as water glass and sodium hexametaphosphate are widely used in sulfide ore flotation. The inhibition mechanism are as follows. The substance formed after hydrolysis is adsorbed on the surface of talc, which makes the talc hydrophilic; high molecular organic inhibitors such as CMC and Gur, have strong inhibition ability on talc and good selectivity. These agents mainly form hydrogen bonds through hydroxyl, carboxyl and talc. The chemical bond makes the talc hydrophilic, and realizes the flotation separation of sulfide ore and talc. The use of effective polymer inhibitors is the main direction for the separation of talc and sulfide ore flotation. In the polymer inhibitors, -OH and -COOH are the main functional groups for inhibiting talc. This is the modification, design and modification of talc inhibitors. Development provides the basis.
[1] | 李萍, 刘文磊, 杨双春, 等.国内外滑石的应用研究进展[J].硅酸盐通报, 2013, 32(4):668-671. |
[2] | 邓敦彪.浅谈永丰滑石矿开发与利用[J].矿产保护与利用, 1995(4):16-18. |
[3] | Beattie D A, Le H, Kaggwa G B, et al. Influence of adsorbed polysaccharides and polyacrylamides on talc flotation[J]. International Journal of Mineral Processing, 2006, 78(4):238-249. |
[4] | Shortridge P G, Harris P J, Bradshaw D J, et al. The effect of chemical composition and molecular weight of polysaccharide depressants on the flotation of talc[J]. International Journal of Mineral Processing, 2000, 59(3):215-224. |
[5] | Jenkins P, Ralston J. The adsorption of a polysaccharide at the talc-aqueous solution interface[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 1998, 139(1):27-40. |
[6] | 任叶叶, 张俭, 严俊, 等.应用X射线衍射-红外光谱等技术研究滑石在机械力研磨中的形貌和晶体结构变化及影响机制[J].岩矿测试, 2015, 32(2):181-186. |
[7] | 黄晓毅, 罗小新, 张兴旺.两种层状镁硅酸盐矿物的晶体结构与可浮性研究[J].重型机械, 2010(s2):105-108. |
[8] | 冯其明, 刘谷山, 欧乐明, 等.铁离子和亚铁离子对滑石浮选的影响及作用机理[J].中南大学学报, 2006, 37(3):476-480. |
[9] | 马建青, 刘星.甘肃金川铜镍矿石中MgO对浮选的影响[J].云南地质, 2005(25):402-406. |
[10] | 董兴旺, 刘俊, 郑力, 等.铜镍硫化矿浮选预脱泥的试验研究[J].矿产保护与利用, 2003(2):28-30. |
[11] | 罗春华, 张秀品, 苏晓晖.抑制剂CMC在青海某硫化铜镍矿浮选中的应用研究[J].有色金属工程, 2017, 7(1):55-59. |
[12] | 彭小平.滑石之应用与分析[J].陶瓷研究, 1995, 10(2):89-95. |
[13] | MichotI J, Villieras F, Francois M. Structuralmicroscopichydrophilicityoftalc[J]. Langmuir, 1994, 10(10):3765-3773. |
[14] | 郭梦熊.浮选[M].徐州:中国矿业大学出版社, 1989:293-295. |
[15] | 陆现彩, 尹琳, 赵连泽, 等.常见层状硅酸盐矿物的表面特征[J].硅酸盐学报, 2003, 31(1):60- 65. |
[16] | Charnay C, Lagerge S. Assessment of the surface heterogeneity of talc materials[J]. Colloidand Interface Science, 2001, 233(2):250- 258. |
[17] | Fuerstenau M C, Lopez-Valdivieso A, Fuerstenau D W. Role of hydrolyzed cations in the natural hydrophobicity of talc[J]. International Journal of Mineral Processing, 1988, 23(3):161-170. |
[18] | 刘谷山, 冯其明, 欧乐明, 等.铜离子和镍离子对滑石浮选的影响及作用机理[J].硅酸盐学报, 2005, 33(8):1018-1022. |
[19] | 张锁君.羧甲基纤维素对抑制滑石浮选的作用机理[J].洛阳师范学院学报, 2014(5):62-64. |
[20] | 潘高产.硫化矿浮选体系中滑石的可浮性研究[J].湖南有色金属, 2012(1):14-17. |
[21] | 卢烁十.滑石的晶体化学研究及其在有色金属硫化矿选矿中的浮选现状和实践[J].矿冶, 2010, 19(3):8-11. |
[22] | 戴子林, 高丽霞, 李桂英, 等.滑石的矿物结构与浮选性能[J].金属矿山, 2019(2):1-6. |
[23] | 郑水林.浑江滑石矿三级块滑石的浮选研究[J].非金属矿, 1989(6):22-24. |
[24] | 梁永忠, 薛问亚.滑石浮选泡沫稳定性及浮选行为研究[J].非金属矿, 1994(4):21-23. |
[25] | 郭梦熊, 王续良.药剂对滑石浮选的影响[J].非金属矿, 1990(2):20-23, 54. |
[26] | 刘玉林, 刘新海, 李一波, 等.某低品位滑石矿浮选试验研究[J].矿产保护与利用, 2013(4):46-48. |
[27] | 王成行, 童雄, 孙吉鹏.水玻璃在选矿中的应用与前景的分析[J].国外金属矿选矿, 2008(10):6-10. |
[28] | 张迎棋.改性水玻璃对钼矿浮选影响[D].沈阳: 东北大学, 2007. |
[29] | 印万忠, 吕振福, 韩跃新, 等.改性水玻璃在萤石矿浮选中的应用及抑制机理[J].东北大学学报(自然科学版), 2009, 30(2):287-290. |
[30] | 马晶, 李枢本, 张文钲.钼矿选矿[M].北京:冶金工业出版社, 2008. |
[31] | 葛平江, 杨延东.水玻璃在氧化矿和多泥硫化矿浮选中的应用研究[J].中国矿山工程, 2006, (2):21-24. |
[32] | 夏启斌, 李忠, 邱显扬.六偏磷酸钠对蛇纹石的分散机理研究[J].矿矿冶工程, 2002, 22(2):51-54. |
[33] | 龙涛, 冯其明, 卢毅屏.六偏磷酸钠在硫化铜镍矿浮选中的分散机理[J].中国有色金属学报, 2012, 22(6):1763-1769. |
[34] | 冯博, 汪惠惠, 周利华.新疆某难选硫化铜镍矿浮选工艺[J].有色金属学报, 2016(5):85-89. |
[35] | 李党国.羧甲基纤维素钠的性质及其在造纸工业中的应用[J].黑龙江造纸, 2008, 36(3):50-52. |
[36] | Jin S, Shi Q, Feng Q, et al. The role of calcium and carbonate ions in the separation of pyrite and talc[J]. Minerals Engineering, 2018, 119:205-211. |
[37] | 欧乐明, 齐超.非极性表面矿物滑石与辉钼矿浮选分离中的多糖抑制[J].金属矿山, 2015(5):85-89. |
[38] | Shortridge P G, Harris P J, Bradshaw D J, et al. The effect of chemical composition and molecular weight of polysaccharide depressants on the flotation of talc[J]. Int. J. Miner. Process, 2000(59): 215-224. |
[39] | 潘高产.羧甲基纤维素钠对滑石可浮性及分散性的影响[J].金属矿山, 2010, 39(6):96-100. |
[40] | J·W, 罗科华, 王荣生, 等.古尔胶在固-液界面上的吸附机理[J].国外金属矿选矿, 2006(4):30-33. |
[41] | 潘高产, 卢毅屏.CMC和古尔胶对滑石浮选的抑制作用研究[J].有色金属(选矿部分), 2013(2):74-78. |
[42] | 陈代雄, 薛伟, 杨建文, 等.一种硫化铜矿物与滑石浮选分离方法: CN103008113A[P].2013-04-03. |
[43] | Liu Q, Zhang Y, Laskowski J S. The adsorption of polysaccharides onto mineral surfaces:an acid/base interaction[J]. International Journal of Mineral Processing, 2000, 60(3):229-245. |
[44] | Norgren M, Edlund H. Lignin:recent advances and emergingapplications[J]. Curr Opin Colloid Interface Sci, 2014, 19(5):409-416. |
[45] | 张保平, 郭美辰, 刘运, 等.木质素及其衍生物在提取冶金中的研究进展[J].生物加工过程, 2018, 16(6):84-91. |
[46] | 张其东.辉钼矿与滑石可浮性差异调控基础研究[D].沈阳: 东北大学, 2016. |
[47] | X·Ma, 张裕书, 雨田.木质素磺酸盐对滑石可浮性的影响[J].国外金属矿选矿, 2008, 45(3):28-33. |
[48] | David A, Beattied, Le Huynh, et al. The effect of polysaccharides and polyacrylamides on the depression of talc and the flotation of sulphide minerals[J]. Minerals Engineering, 2006, 19(6-8):598-608. |
[49] | Andy leung, James Wiltshire. The effect of acrylamide-co-vinylpyrrolidinone copolymer on the depression of talc in mixed nickel miner-al flotation[J]. Minerals Engineering, 2011(24):449-454. |
Crystalline structure of talc
The formula of sodium carboxymethyl cellulose
The structural formula of gourd gum