Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2020 Vol. 40, No. 1
Article Contents

ZHAO Yue, WANG Xiaoyan, YUAN Wenyi, ZHANG Qiwu. Mechanochemical Activated Coal Gangue One-step Preparation of High-efficiency Coagulant[J]. Conservation and Utilization of Mineral Resources, 2020, 40(1): 16-22. doi: 10.13779/j.cnki.issn1001-0076.2020.01.003
Citation: ZHAO Yue, WANG Xiaoyan, YUAN Wenyi, ZHANG Qiwu. Mechanochemical Activated Coal Gangue One-step Preparation of High-efficiency Coagulant[J]. Conservation and Utilization of Mineral Resources, 2020, 40(1): 16-22. doi: 10.13779/j.cnki.issn1001-0076.2020.01.003

Mechanochemical Activated Coal Gangue One-step Preparation of High-efficiency Coagulant

More Information
  • Taking kaolinite as an example, A novel process to prepare aluminum-sulfuric acid coagulant is examined by the high-energy ball milling activation of Coal gangue, followed by co-grinding with concentrated sulfuric acid, instead of the traditional high-temperature activated acid-alkali process. The prepared coagulant is characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and nuclear magnetic resonance (CP/MAS NMR). Besides, the performance of the coagulant was evaluated by the removal rate of pollutants such as turbidity, orthophosphate, pentavalent arsenic, and humic acid. The results show that the coagulant has high activity and the removal rates of the above four pollutants reach 95.95%, 91.2%, 89.6% and 93.73%, respectively. The prepared coagulant can be used as a substitute for the existing aluminum-based coagulant. The preparation process is simple, clean production and environmental-friendly, in addition, it expands a new route to utilize kaolinite-rich tailings of coal mining gangue etc and provides the use of high efficient coagulant cheaper possibility.

  • 加载中
  • [1] 胡雪婷, 塔林托亚, 赵斯琴, 等.由煤系高岭土制备硫酸铝及其絮凝性能[J].应用化工, 2017, 46(6):1074-1077. doi: 10.3969/j.issn.1671-3206.2017.06.012

    CrossRef Google Scholar

    [2] 郭利娜.内蒙伊利石型黏土矿制备白炭黑及聚合硫酸铝研究[D].西安: 西安科技大学, 2018.http://cdmd.cnki.com.cn/Article/CDMD-10704-1018882684.htm

    Google Scholar

    [3] 张洪, 王明勇, 丘关南, 等.用工业废铝渣和废酸制备聚合硫酸铝的研究[J].轻工科技, 2017, 33(3):93-94.

    Google Scholar

    [4] Hassan A, Arif M, Shariq M. Use of geopolymer concrete for a cleaner and sustainable environment-a review of mechanical properties and microstructure[J]. Journal of Cleaner Production, 2019, 223:704-728. doi: 10.1016/j.jclepro.2019.03.051

    CrossRef Google Scholar

    [5] Su Z, Guo L, Zhang Z, et al. Influence of different fibers on properties of thermal insulation composites based on geopolymer blended with glazed hollow bead[J]. Construction and Building Materials, 2019, 203:525-540. doi: 10.1016/j.conbuildmat.2019.01.121

    CrossRef Google Scholar

    [6] Ayodele O B, Abdullah A Z. Exploring kaolinite as dry methane reforming catalyst support:influences of chemical activation, organic ligand functionalization and calcination temperature[J]. Applied Catalysis A:General, 2019, 576:20-31. doi: 10.1016/j.apcata.2019.02.034

    CrossRef Google Scholar

    [7] Zhang Z H, Zhu H J, Zhou C H, et al. Geopolymer from kaolin in china:an overview[J]. Applied Clay Science, 2016, 119:31-41. doi: 10.1016/j.clay.2015.04.023

    CrossRef Google Scholar

    [8] He P, Jia D, Lin T, et al. Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites[J]. Ceramics International, 2010, 36(4):1447-1453. doi: 10.1016/j.ceramint.2010.02.012

    CrossRef Google Scholar

    [9] Firdous R, Stephan D, Djobo J N Y. Natural pozzolan based geopolymers:a review on mechanical, microstructural and durability characteristics[J]. Construction and Building Materials, 2018, 190:1251-1263. doi: 10.1016/j.conbuildmat.2018.09.191

    CrossRef Google Scholar

    [10] Melo C R, Riella H G, Kuhnen N C, et al. Synthesis of 4a zeolites from kaolin for obtaining 5a zeolites through ionic exchange for adsorption of arsenic[J]. Materials Science and Engineering:B, 2012, 177(4):345-349. doi: 10.1016/j.mseb.2012.01.015

    CrossRef Google Scholar

    [11] Cagnetta G, Robertson J, Huang J, et al. Mechanochemical destruction of halogenated organic pollutants:A critical review[J]. Journal of Hazardous Materials, 2016, 313:85-102. doi: 10.1016/j.jhazmat.2016.03.076

    CrossRef Google Scholar

    [12] Qu J, Zhang Q, Li X, et al. Mechanochemical approaches to synthesize layered double hydroxides:a review[J]. Applied Clay Science, 2016, 119:185-192. doi: 10.1016/j.clay.2015.10.018

    CrossRef Google Scholar

    [13] Makó é, Senkár Z, Kristóf J, et al. Surface modification of mechanochemically activated kaolinites by selective leaching[J]. Journal of Colloid and Interface Science, 2006, 294(2):362-370. doi: 10.1016/j.jcis.2005.07.033

    CrossRef Google Scholar

    [14] Horváth E, Frost R L, Makó é, et al. Thermal treatment of mechanochemically activated kaolinite[J]. Thermochimica Acta, 2003, 404(1-2):227-234. doi: 10.1016/S0040-6031(03)00184-9

    CrossRef Google Scholar

    [15] Frost R L, Horváth E, Makó é, et al. Modification of low- and High-Defect kaolinite surfaces:implications for kaolinite mineral processing[J]. Journal of Colloid and Interface Science, 2004, 270(2):337-346. doi: 10.1016/j.jcis.2003.10.034

    CrossRef Google Scholar

    [16] Solihin, Zhang Q, Tongamp W, et al. Mechanochemical synthesis of kaolin-KH2PO4 and kaolin-NH4H2PO4 complexes for application as slow release fertilizer[J]. Powder Technology, 2011, 212(2):354-358. doi: 10.1016/j.powtec.2011.06.012

    CrossRef Google Scholar

    [17] Lei Z, Cagnetta G, Li X, et al. Enhanced adsorption of potassium nitrate with potassium cation on H3PO4 modified kaolinite and nitrate anion into Mg-Al layered double hydroxide[J]. Applied Clay Science, 2018, 154:10-16. doi: 10.1016/j.clay.2017.12.040

    CrossRef Google Scholar

    [18] 方燕, 陶奇, 陈爱清, 等.机械研磨高岭石的固体29Si、27Al核磁共振光谱研究[J].矿物学报, 2017, 37(6):677-683.

    Google Scholar

    [19] Tao Q, Fang Y, Li T, et al. Silylation of saponite with 3-Aminopropyltriethoxysilane[J]. Applied Clay Science, 2016, 132-133:133-139. doi: 10.1016/j.clay.2016.05.026

    CrossRef Google Scholar

    [20] Temuujin J, Okada K, MacKenzie K J D, et al. Characterization of porous silica prepared from mechanically amorphized kaolinite by selective leaching[J]. Powder Technology, 2001, 121(2):259-262.

    Google Scholar

    [21] 司鹏, 乔秀臣, 于建国.机械力化学效应对高岭石铝氧多面体的影响[J].武汉理工大学学报, 2011, 33(5):22-26. doi: 10.3963/j.issn.1671-4431.2011.05.006

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(1075) PDF downloads(94) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint