Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2019 Vol. 39, No. 6
Article Contents

ZHUANG Guanzheng, DENG Liangliang, DU Peixin, YUAN Peng, LIU Dong. Building and Applications of Diatom Silica-Based Advanced Materials[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 121-133. doi: 10.13779/j.cnki.issn1001-0076.2019.06.017
Citation: ZHUANG Guanzheng, DENG Liangliang, DU Peixin, YUAN Peng, LIU Dong. Building and Applications of Diatom Silica-Based Advanced Materials[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 121-133. doi: 10.13779/j.cnki.issn1001-0076.2019.06.017

Building and Applications of Diatom Silica-Based Advanced Materials

More Information
  • The formation, structures and properties of diatomaceous opal were briefly reviewed. Due to the unique and biogenic nature, plenty of advanced materials based on diatomaceous opal were proposed and had been investigated in the past years. Herein, the building and applications of diatomaceous opal-based materials in the fields of environmental treatment, nano energies (such as lithium ion batteries, supercapacitors, solar cells, hydrogen and thermal storage) and biomedical uses (e.g., drug delivery and controlled release, tissue engineering, hemorrhage control and biosensing) were summarized. The roles and working mechanisms of diatomaceous opal were also discussed. In addition, we also discussed the perspectives of the applications of diatomaceous opal-based advanced materials.

  • 加载中
  • [1] 袁巍巍.硅藻土基多孔矿物复合材料制备及其对有机污染物的吸附/催化性研究[D].广州: 中国科学院研究生院(广州地球化学研究所), 2016.http://cdmd.cnki.com.cn/Article/CDMD-80165-1016188320.htm

    Google Scholar

    [2] 袁鹏.硅藻土的提纯及其表面羟基、酸位研究[D].广州: 中国科学院广州地球化学研究所, 2001.http://cdmd.cnki.com.cn/Article/CDMD-80165-2002080818.htm

    Google Scholar

    [3] 史家远, 姚奇志, 周根陶.硅藻细胞壁硅化过程中有机质-矿物的相互作用[J].高校地质学报, 2011, 17(1):76-85. doi: 10.3969/j.issn.1006-7493.2011.01.010

    CrossRef Google Scholar

    [4] Maher S, Kumeria T, Aw M S, et al. Diatom silica for biomedical applications:Recent progress and advances[J]. Advanced Healthcare Materials, 2018, 7(19):1800552. doi: 10.1002/adhm.201800552

    CrossRef Google Scholar

    [5] Liu D, Yuan P, Tian Q, et al. Lake sedimentary biogenic silica from diatoms constitutes a significant global sink for aluminium[J]. Nature Communications, 2019, 10(1):1-7. doi: 10.1038/s41467-018-07882-8

    CrossRef Google Scholar

    [6] Losic D, Mitchell J G, Voelcker N H. Diatomaceous lessons in nanotechnology and advanced materials[J]. Advanced Materials, 2009, 21(29):2947-2958. doi: 10.1002/adma.200803778

    CrossRef Google Scholar

    [7] Yuan P, Liu D, Zhou J, et al. Identification of the occurrence of minor elements in the structure of diatomaceous opal using FIB and TEM-EDS[J]. American Mineralogist, 2019, 104(9):1323-1335. doi: 10.2138/am-2019-6917

    CrossRef Google Scholar

    [8] 袁鹏, 吴大清.硅藻土在一些高附加值产品中的应用及其基础研究[J].矿物岩石, 2000, 20(1):101-104.

    Google Scholar

    [9] Losic D. Diatom nanotechnology[M]. Cambridge:Royal Society of Chemistry, 2017.

    Google Scholar

    [10] Zhao Y, Tian G, Duan X, et al. Environmental applications of diatomite minerals in removing heavy metals from water[J]. Industrial & Engineering Chemistry Research, 2019, 58(27):11638-11652.

    Google Scholar

    [11] Bera A, Trivedi J S, Kumar S B, et al. Anti-organic fouling and anti-biofouling poly (Piperazineamide) thin film nanocomposite membranes for low pressure removal of heavy metal ions[J]. Journal of Hazardous Materials, 2018, 343:86-97. doi: 10.1016/j.jhazmat.2017.09.016

    CrossRef Google Scholar

    [12] Lin Q, Liu E, Zhang E, et al. Reconstruction of atmospheric trace metals pollution in southwest China using sediments from a large and deep alpine lake:Historical trends, sources and sediment focusing[J]. Science of the total environment, 2018, 613:331-341.

    Google Scholar

    [13] Yuan P, Liu D, Tan D-Y, et al. Surface silylation of mesoporous/macroporous diatomite (Diatomaceous earth) and its function in Cu (Ⅱ) adsorption:the effects of heating pretreatment[J]. Microporous and mesoporous materials, 2013, 170:9-19. doi: 10.1016/j.micromeso.2012.11.030

    CrossRef Google Scholar

    [14] Alyosef H A, Ibrahim S, Welscher J, et al. Effect of acid treatment on the chemical composition and the structure of egyptian diatomite[J]. International Journal of Mineral Processing, 2014, 132:17-25. doi: 10.1016/j.minpro.2014.09.001

    CrossRef Google Scholar

    [15] Mohamed E A, Selim A Q, Zayed A M, et al. Enhancing adsorption capacity of egyptian diatomaceous earth by thermo-chemical purification:methylene blue uptake[J]. Journal of Colloid and Interface Science, 2019, 534:408-419. doi: 10.1016/j.jcis.2018.09.024

    CrossRef Google Scholar

    [16] Al-Degs Y, Khraisheh M, Tutunji M. Sorption of lead Ions on diatomite and manganese oxides modified diatomite[J]. Water Research, 2001, 35(15):3724-3728. doi: 10.1016/S0043-1354(01)00071-9

    CrossRef Google Scholar

    [17] Caliskan N, Kul A R, Alkan S, et al. Adsorption of zinc (Ⅱ) on diatomite and manganese-oxide-modified diatomite:a kinetic and equilibrium study[J]. Journal of Hazardous Materials, 2011, 193:27-36. doi: 10.1016/j.jhazmat.2011.06.058

    CrossRef Google Scholar

    [18] Li E, Zeng X. Sorption of Cr (Ⅲ) Ion from aqueous solution by two kinds of modified diatomite[J]. Water Science and Technology, 2012, 66(6):1340-1347. doi: 10.2166/wst.2012.327

    CrossRef Google Scholar

    [19] Li S, Li D, Su F, et al. Uniform surface modification of diatomaceous earth with amorphous manganese oxide and its adsorption characteristics for lead ions[J]. Applied Surface Science, 2014, 317:724-729. doi: 10.1016/j.apsusc.2014.08.184

    CrossRef Google Scholar

    [20] Al-Degs Y S, Tutunju M F, Shawabkeh R A. The feasibility of using diatomite and Mn-diatomite for remediation of Pb2+, Cu2+, and Cd2+from water[J]. Separation Science and Technology, 2000, 35(14):2299-2310. doi: 10.1081/SS-100102103

    CrossRef Google Scholar

    [21] Du Y, Wang L, Wang J, et al. Flower-, Wire-, and Sheet-Like MnO2-Deposited Diatomites:Highly efficient absorbents for the removal of Cr (Ⅵ)[J]. Journal of Environmental Sciences, 2015, 29:71-81. doi: 10.1016/j.jes.2014.06.047

    CrossRef Google Scholar

    [22] Du Y, Zheng G, Wang J, et al. MnO2 nanowires in situ grown on diatomite:highly efficient absorbents for the removal of Cr (Ⅵ) and As (Ⅴ)[J]. Microporous and Mesoporous Materials, 2014, 200:27-34. doi: 10.1016/j.micromeso.2014.07.043

    CrossRef Google Scholar

    [23] Du Y, Fan H, Wang L, et al. α-Fe2O3 nanowires deposited diatomite:highly efficient absorbents for the removal of arsenic[J]. Journal of Materials Chemistry A, 2013, 1(26):7729-7737. doi: 10.1039/c3ta11124e

    CrossRef Google Scholar

    [24] Knoerr R, Brendlé J, Lebeau B, et al. Preparation of ferric oxide modified diatomite and its application in the remediation of As (Ⅲ) species from solution[J]. Microporous and Mesoporous Materials, 2013, 169:185-191. doi: 10.1016/j.micromeso.2012.09.036

    CrossRef Google Scholar

    [25] Puente-Urbina A, Montero-Campos V. Porous materials modified with Fe3O4 nanoparticles for arsenic removal in drinking water[J]. Water, Air, & Soil Pollution, 2017, 228(9):374.

    Google Scholar

    [26] Wu C-C, Wang Y-C, Lin T-F, et al. Removal of arsenic from waste water using surface modified diatomite[J]. Journal of the Chinese Institute of Environmental Engineering, 2005, 15(4):255-261.

    Google Scholar

    [27] Chang F, Qu J, Liu H, et al. Fe-Mn binary oxide incorporated into diatomite as an adsorbent for arsenite removal:preparation and evaluation[J]. Journal of Colloid and Interface Science, 2009, 338(2):353-358. doi: 10.1016/j.jcis.2009.06.049

    CrossRef Google Scholar

    [28] Caner N, Sarı A, TüZen M. Adsorption characteristics of mercury (Ⅱ) ions from aqueous solution onto chitosan-coated diatomite[J]. Industrial & Engineering Chemistry Research, 2015, 54(30):7524-7533.

    Google Scholar

    [29] Yu Z-H, Zhang Y-F, Zhai S-R, et al. Amino-modified mesoporous sorbents for efficient Cd (Ⅱ) adsorption prepared using non-chemical diatomite as precursor[J]. Journal of Sol-Gel Science and Technology, 2016, 78(1):110-119. doi: 10.1007/s10971-015-3933-8

    CrossRef Google Scholar

    [30] Abu-Zurayk R A, Al Bakain R Z, Hamadneh I, et al. Adsorption of Pb (Ⅱ), Cr (Ⅲ) and Cr (Ⅵ) from aqueous solution by surfactant-modified diatomaceous earth:Equilibrium, kinetic and thermodynamic modeling studies[J]. International Journal of Mineral Processing, 2015, 140:79-87. doi: 10.1016/j.minpro.2015.05.004

    CrossRef Google Scholar

    [31] Yu Y, Addai-Mensah J, Losic D. Functionalized diatom silica microparticles for removal of mercury ions[J]. Science and Technology of Advanced Materials, 2012, 13(1):015008. doi: 10.1088/1468-6996/13/1/015008

    CrossRef Google Scholar

    [32] Dahn J R, Zheng T, Liu Y, et al. Mechanisms for lithium insertion in carbonaceous materials[J]. Science, 1995, 270(5236):590-593. doi: 10.1126/science.270.5236.590

    CrossRef Google Scholar

    [33] Etacheri V, Marom R, Elazari R, et al. Challenges in the development of advanced Li-ion batteries:a review[J]. Energy & Environmental Science, 2011, 4(9):3243-3262.

    Google Scholar

    [34] Poizot P, Laruelle S, Grugeon S, et al. Searching for new anode materials for the Li-ion technology:time to deviate from the usual path[J]. Journal of Power Sources, 2001, 97:235-239.

    Google Scholar

    [35] Wen C J, Huggins R A. Thermodynamic study of the lithium-tin system[J]. Journal of the Electrochemical Society, 1981, 128(6):1181-1187. doi: 10.1149/1.2127590

    CrossRef Google Scholar

    [36] Bao Z, Weatherspoon M R, Shian S, et al. Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas[J]. Nature, 2007, 446(7132):172-175. doi: 10.1038/nature05570

    CrossRef Google Scholar

    [37] Arunmetha S, Vinoth M, Srither S R, et al. Study on production of silicon nanoparticles from quartz sand for hybrid solar cell applications[J]. Journal of Electronic Materials, 2017, 47(1):493-502.

    Google Scholar

    [38] Campbell B, Ionescu R, Tolchin M, et al. Carbon-coated, diatomite-derived nanosilicon as a high rate capable Li-ion battery anode[J]. Scitific Reports, 2016, 6:33050. doi: 10.1038/srep33050

    CrossRef Google Scholar

    [39] Wang M-S, Fan L-Z, Huang M, et al. Conversion of diatomite to porous Si/C composites as promising anode materials for lithium-ion batteries[J]. Journal of Power Sources, 2012, 219:29-35. doi: 10.1016/j.jpowsour.2012.06.102

    CrossRef Google Scholar

    [40] Zhang Y X, Huang M, Li F, et al. One-pot synthesis of hierarchical MnO2-modified diatomites for electrochemical capacitor electrodes[J]. Journal of Power Sources, 2014, 246:449-456. doi: 10.1016/j.jpowsour.2013.07.115

    CrossRef Google Scholar

    [41] Zhang Y X, Li F, Huang M, et al. Hierarchical NiO moss decorated diatomites via facile and templated method for high performance supercapacitors[J]. Materials Letters, 2014, 120:263-266. doi: 10.1016/j.matlet.2014.01.091

    CrossRef Google Scholar

    [42] Guo X L, Kuang M, Li F, et al. Engineering of three dimensional (3-D) diatom@TiO2@MnO2 composites with enhanced supercapacitor performance[J]. Electrochimica Acta, 2016, 190:159-167. doi: 10.1016/j.electacta.2015.12.178

    CrossRef Google Scholar

    [43] Wen Z Q, Li M, Li F, et al. Morphology-controlled MnO2-graphene oxide-diatomaceous earth 3-dimensional (3D) composites for high-performance supercapacitors[J]. Dalton Transactions, 2016, 45(3):936-942. doi: 10.1039/C5DT04082E

    CrossRef Google Scholar

    [44] Li F, Xing Y, Huang M, et al. MnO2 nanostructures with three-dimensional (3D) morphology replicated from diatoms for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(15):7855-7861. doi: 10.1039/C5TA00634A

    CrossRef Google Scholar

    [45] Sun X W, Zhang Y X, Losic D. Diatom silica, an emerging biomaterial for energy conversion and storage[J]. Journal of Materials Chemistry A, 2017, 5(19):8847-59. doi: 10.1039/C7TA02045G

    CrossRef Google Scholar

    [46] Baxter J, Bian Z, Gang C, et al. Nanoscale design to enable the revolution in renewable energy[J]. Energy & Environmental Science, 2009, 2(6):559-588.

    Google Scholar

    [47] Chen X, Mao S S. Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications[J]. Chemical Reviews, 2017, 107(7):2891-2959.

    Google Scholar

    [48] Gonalves L M, De Zea Bermudez V, Ribeiro H A, et al. Dye-sensitized solar cells:A safe bet for the future[J]. Energy & Environmental Science, 2008, 1(6):655-667.

    Google Scholar

    [49] Hernández-Alonso M D, Fresno F, Suárez S, et al. Development of alternative photocatalysts to TiO2:challenges and opportunities[J]. Energy & Environmental Science, 2009, 2(12):1231-1257.

    Google Scholar

    [50] Inoue Y. Photocatalytic water splitting by RuO2 -loaded metal oxides and nitrides with d 0-and d 10-related electronic configurations[J]. Energy & Environmental Science, 2009, 2(4):364.

    Google Scholar

    [51] Chandrasekaran S, Sweetman M J, Kant K, et al. Silicon diatom frustules as nanostructured photoelectrodes[J]. Chemical Communications, 2014, 50(72):10441-10444. doi: 10.1039/C4CC04470C

    CrossRef Google Scholar

    [52] O'regan B, Grätzel M. Low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353(6346):737-740. doi: 10.1038/353737a0

    CrossRef Google Scholar

    [53] Nazeeruddin M K, Kay A, Rodicio I, et al. Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (Ⅱ) charge-transfer sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes[J]. Journal of the American Chemical Society, 1993, 115(14):6382-6390. doi: 10.1021/ja00067a063

    CrossRef Google Scholar

    [54] Zhang Q, Dandeneau C S, Zhou X, et al. ZnO nanostructures for dye-sensitized solar cells[J]. Advanced Materials, 2009, 21(41):4087-4108. doi: 10.1002/adma.200803827

    CrossRef Google Scholar

    [55] Duong T-T, Choi H-J, He Q-J, et al. Enhancing the efficiency of dye sensitized solar cells with an SnO2 blocking layer grown by nanocluster deposition[J]. Journal of Alloys and Compounds, 2013, 561:206-210. doi: 10.1016/j.jallcom.2013.01.188

    CrossRef Google Scholar

    [56] Barea E, Xu X, Gonzálezpedro V, et al. Origin of efficiency enhancement in Nb2O5 coated titanium dioxide nanorod based dye sensitized solar cells[J]. Energy & Environmental Science, 2011, 4(9):3414-3419.

    Google Scholar

    [57] Losic D, Triani G, Evans P J, et al. Controlled pore structure modification of diatoms by atomic layer deposition of TiO2[J]. Journal of Materials Chemistry, 2006, 16(41):4029-4034. doi: 10.1039/b610188g

    CrossRef Google Scholar

    [58] Hoshikawa T, Ikebe T, Yamada M, et al. Preparation of silica-modified TiO2 and application to dye-sensitized solar cells[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2006, 184(1-2):78-85. doi: 10.1016/j.jphotochem.2006.04.001

    CrossRef Google Scholar

    [59] Park K H, Li H, Dhayal M, et al. Performance improvement of dye-sensitized glass powder added TiO2 solar cells[J]. Journal of Nanoscience and Nanotechnology, 2008, 8(10):5252-5256. doi: 10.1166/jnn.2008.1024

    CrossRef Google Scholar

    [60] Fuhrmann T, Landwehr S, El Rharbi-Kucki M, et al. Diatoms as living photonic crystals[J]. Applied Physics B, 2004, 78(3-4):257-260. doi: 10.1007/s00340-004-1419-4

    CrossRef Google Scholar

    [61] Tachibana Y, Akiyama H Y, Kuwabata S. Optical simulation of transmittance into a nanocrystalline anatase TiO2 film for solar cell applications[J]. Solar Energy Materials and Solar Cells, 2007, 91(2-3):201-206. doi: 10.1016/j.solmat.2006.09.001

    CrossRef Google Scholar

    [62] Huang D-R, Jiang Y-J, Liou R-L, et al. Enhancing the efficiency of dye-sensitized solar cells by adding diatom frustules into TiO2 working electrodes[J]. Applied Surface Science, 2015, 347:64-72. doi: 10.1016/j.apsusc.2015.04.064

    CrossRef Google Scholar

    [63] Jin J, Zheng C, Yang H. Natural diatomite modified as novel hydrogen storage material[J]. Functional Materials Letters, 2014, 7(3):1450027. doi: 10.1142/S1793604714500271

    CrossRef Google Scholar

    [64] Milovanović S, Matović L, Drvendžija M, et al. Hydrogen storage properties of MgH2- diatomite composites obtained by high-energy ball milling[J]. Journal of Microscopy, 2008, 232(3):522-525. doi: 10.1111/j.1365-2818.2008.02113.x

    CrossRef Google Scholar

    [65] Dincer I. On thermal energy storage systems and applications in buildings[J]. Energy and Buildings, 2002, 34(4):377-388. doi: 10.1016/S0378-7788(01)00126-8

    CrossRef Google Scholar

    [66] Khudhair A M, Farid M M. A review on energy conservation in building applications with thermal storage by latent heat using phase change materials[J]. Energy conversion and management, 2004, 45(2):263-275. doi: 10.1016/S0196-8904(03)00131-6

    CrossRef Google Scholar

    [67] Liu C-P, Seeds A. Wireless-over-fiber technology-bringing the wireless world indoors[J]. Optics and Photonics News, 2010, 21(11):28-33. doi: 10.1364/OPN.21.11.000028

    CrossRef Google Scholar

    [68] Tyagi V, Kaushik S, Tyagi S, et al. Development of phase change materials based microencapsulated technology for buildings:a review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(2):1373-1391. doi: 10.1016/j.rser.2010.10.006

    CrossRef Google Scholar

    [69] Regin A F, Solanki S, Saini J. Heat transfer characteristics of thermal energy storage system using PCM capsules:a review[J]. Renewable and Sustainable Energy Reviews, 2008, 12(9):2438-2458. doi: 10.1016/j.rser.2007.06.009

    CrossRef Google Scholar

    [70] Zhou D, Zhao C-Y, Tian Y. Review on thermal energy storage with phase change materials (PCMs) in building applications[J]. Applied Energy, 2012, 92:593-605. doi: 10.1016/j.apenergy.2011.08.025

    CrossRef Google Scholar

    [71] Memon S A. Phase change materials integrated in building walls:A state of the art review[J]. Renewable and Sustainable Energy Reviews, 2014, 31:870-906. doi: 10.1016/j.rser.2013.12.042

    CrossRef Google Scholar

    [72] Sarier N, Onder E. Organic phase change materials and their textile applications:an overview[J]. Thermochimica Acta, 2012, 540:7-60. doi: 10.1016/j.tca.2012.04.013

    CrossRef Google Scholar

    [73] Zhang Z, Shi G, Wang S, et al. Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material[J]. Renewable Energy, 2013, 50:670-675. doi: 10.1016/j.renene.2012.08.024

    CrossRef Google Scholar

    [74] Sarı A, Biçer A. Thermal energy storage properties and thermal reliability of some fatty acid esters/building material composites as novel form-stable PCMs[J]. Solar Energy Materials and Solar Cells, 2012, 101:114-122. doi: 10.1016/j.solmat.2012.02.026

    CrossRef Google Scholar

    [75] Lafdi K, Mesalhy O, Elgafy A. Graphite foams infiltrated with phase change materials as alternative materials for space and terrestrial thermal energy storage applications[J]. Carbon, 2008, 46(1):159-168. doi: 10.1016/j.carbon.2007.11.003

    CrossRef Google Scholar

    [76] Li M, Wu Z, Kao H, et al. Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material[J]. Energy Conversion and Management, 2011, 52(11):3275-3281. doi: 10.1016/j.enconman.2011.05.015

    CrossRef Google Scholar

    [77] Jiao C, Ji B, Fang D. Preparation and properties of lauric acid-stearic acid/expanded perlite composite as phase change materials for thermal energy storage[J]. Materials Letters, 2012, 67(1):352-354. doi: 10.1016/j.matlet.2011.09.099

    CrossRef Google Scholar

    [78] Li M, Wu Z, Chen M. Preparation and properties of gypsum-based heat storage and preservation material[J]. Energy and Buildings, 2011, 43(9):2314-2319. doi: 10.1016/j.enbuild.2011.05.016

    CrossRef Google Scholar

    [79] Li M, Kao H, Wu Z, et al. Study on preparation and thermal property of binary fatty acid and the binary fatty acids/diatomite composite phase change materials[J]. Applied Energy, 2011, 88(5):1606-1612. doi: 10.1016/j.apenergy.2010.11.001

    CrossRef Google Scholar

    [80] Karaman S, Karaipekli A, Sarı A, et al. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2011, 95(7):1647-1653. doi: 10.1016/j.solmat.2011.01.022

    CrossRef Google Scholar

    [81] Karaipekli A, Sarı A. Capric-myristic acid/vermiculite composite as form-stable phase change material for thermal energy storage[J]. Solar Energy, 2009, 83(3):323-332. doi: 10.1016/j.solener.2008.08.012

    CrossRef Google Scholar

    [82] Karaipekli A, Sarı A. Preparation, thermal properties and thermal reliability of eutectic mixtures of fatty acids/expanded vermiculite as novel form-stable composites for energy storage[J]. Journal of Industrial and Engineering Chemistry, 2010, 16(5):767-773. doi: 10.1016/j.jiec.2010.07.003

    CrossRef Google Scholar

    [83] Li M, Wu Z, Kao H. Study on preparation, structure and thermal energy storage property of capric-palmitic acid/attapulgite composite phase change materials[J]. Applied Energy, 2011, 88(9):3125-3132. doi: 10.1016/j.apenergy.2011.02.030

    CrossRef Google Scholar

    [84] Xu B, Li Z. Performance of novel thermal energy storage engineered cementitious composites incorporating a paraffin/diatomite composite phase change material[J]. Applied Energy, 2014, 121:114-122. doi: 10.1016/j.apenergy.2014.02.007

    CrossRef Google Scholar

    [85] Xu B, Li Z. Paraffin/diatomite/multi-wall carbon nanotubes composite phase change material tailor-made for thermal energy storage cement-based composites[J]. Energy, 2014, 72:371-380. doi: 10.1016/j.energy.2014.05.049

    CrossRef Google Scholar

    [86] Li X, Sanjayan J G, Wilson J L. Fabrication and stability of form-stable diatomite/paraffin phase change material composites[J]. Energy and Buildings, 2014, 76:284-394. doi: 10.1016/j.enbuild.2014.02.082

    CrossRef Google Scholar

    [87] Li M, Wu Z, Kao H. Study on preparation and thermal properties of binary fatty acid/diatomite shape-stabilized phase change materials[J]. Solar Energy Materials and Solar Cells, 2011, 95(8):2412-2416. doi: 10.1016/j.solmat.2011.04.017

    CrossRef Google Scholar

    [88] Ferrari M. Cancer nanotechnology:opportunities and challenges[J]. Nature Reviews Cancer, 2005, 5(3):161-171. doi: 10.1038/nrc1566

    CrossRef Google Scholar

    [89] Wagner V, Dullaart A, Bock A-K, et al. The emerging nanomedicine landscape[J]. Nature Biotechnology, 2006, 24(10):1211. doi: 10.1038/nbt1006-1211

    CrossRef Google Scholar

    [90] Shahbazi M A, Herranz B, Santos H A. Nanostructured porous Si-based nanoparticles for targeted drug delivery[J]. Biomatter, 2012, 2(4):296-312. doi: 10.4161/biom.22347

    CrossRef Google Scholar

    [91] Delalat B, Sheppard V C, Rasi G S, et al. Targeted drug delivery using genetically engineered diatom biosilica[J]. Nature Communications, 2015, 6:8791. doi: 10.1038/ncomms9791

    CrossRef Google Scholar

    [92] Anderson M W, Holmes S M, Hanif N, et al. Hierarchical pore structures through diatom zeolitization[J]. Angewandte Chemie International Edition, 2000, 39(15):2707-2710. doi: 10.1002/1521-3773(20000804)39:15<2707::AID-ANIE2707>3.0.CO;2-M

    CrossRef Google Scholar

    [93] Rosi N L, Thaxton C S, Mirkin C A. Control of nanoparticle assembly by using DNA-modified diatom templates[J]. Angewandte Chemie International Edition, 2004, 43(41):5500-5503. doi: 10.1002/anie.200460905

    CrossRef Google Scholar

    [94] Aw M S, Simovic S, Addai-Mensah J, et al. Silica microcapsules from diatoms as new carrier for delivery of therapeutics[J]. Nanomedicine, 2011, 6(7):1159-1173. doi: 10.2217/nnm.11.29

    CrossRef Google Scholar

    [95] Aw M S, Simovic S, Yu Y, et al. Porous silica microshells from diatoms as biocarrier for drug delivery applications[J]. Powder technology, 2012, 223:52-58. doi: 10.1016/j.powtec.2011.04.023

    CrossRef Google Scholar

    [96] Zhang H, Shahbazi M-A, Mäkilä E M, et al. Diatom silica microparticles for sustained release and permeation enhancement following oral delivery of prednisone and mesalamine[J]. Biomaterials, 2013, 34(36):9210-9219. doi: 10.1016/j.biomaterials.2013.08.035

    CrossRef Google Scholar

    [97] Aw M S, Bariana M, Yu Y, et al. Surface-functionalized diatom microcapsules for drug delivery of water-insoluble drugs[J]. Journal of biomaterials applications, 2013, 28(2):163-174.

    Google Scholar

    [98] Bariana M, Aw M S, Losic D. Tailoring morphological and interfacial properties of diatom silica microparticles for drug delivery applications[J]. Advanced Powder Technology, 2013, 24(4):757-763. doi: 10.1016/j.apt.2013.03.015

    CrossRef Google Scholar

    [99] Losic D, Yu Y, Aw M S, et al. Surface functionalisation of diatoms with dopamine modified iron-oxide nanoparticles:toward magnetically guided drug microcarriers with biologically derived morphologies[J]. Chemical Communications, 2010, 46(34):6323-6325. doi: 10.1039/c0cc01305f

    CrossRef Google Scholar

    [100] Todd T, Zhen Z, Tang W, et al. Iron oxide nanoparticle encapsulated diatoms for magnetic delivery of small molecules to tumors[J]. Nanoscale, 2014, 6(4):2073-2076. doi: 10.1039/c3nr05623f

    CrossRef Google Scholar

    [101] Kumeria T, Bariana M, Altalhi T, et al. Graphene oxide decorated diatom silica particles as new nano-hybrids:towards smart natural drug microcarriers[J]. Journal of Materials Chemistry B, 2013, 1(45):6302-6311. doi: 10.1039/c3tb21051k

    CrossRef Google Scholar

    [102] Terracciano M, Shahbazi M A, Correia A, et al. Surface bioengineering of diatomite based nanovectors for efficient intracellular uptake and drug delivery[J]. Nanoscale, 2015, 7(47):20063-20074. doi: 10.1039/C5NR05173H

    CrossRef Google Scholar

    [103] Rea I, Martucci N M, De S L, et al. Diatomite biosilica nanocarriers for siRNA transport inside cancer cells[J]. BBA-General Subjects, 2014, 1840(12):3393-3403. doi: 10.1016/j.bbagen.2014.09.009

    CrossRef Google Scholar

    [104] Cauda V, Schlossbauer A, Bein T. Bio-degradation study of colloidal mesoporous silica nanoparticles:Effect of surface functionalization with organo-silanes and poly(ethylene glycol)[J]. Microporous & Mesoporous Materials, 2010, 132(1):60-71.

    Google Scholar

    [105] Hao N, Liu H, Li L, et al. In vitro degradation behavior of silica nanoparticles under physiological conditions[J]. Journal of Nanoscience & Nanotechnology, 2012, 12(8):6346.

    Google Scholar

    [106] Martinez J O, Chiappini C, Ziemys A, et al. Engineering multi-stage nanovectors for controlled degradation andtunable release kinetics[J]. Biomaterials, 2013, 34(33):8469-8477. doi: 10.1016/j.biomaterials.2013.07.049

    CrossRef Google Scholar

    [107] Park J H, Gu L, Von M G, et al. Biodegradable luminescent porous silicon nanoparticles for in vivo applications[J]. Nature Materials, 2009, 8(4):331-336.

    Google Scholar

    [108] Borak B, Biernat P, Prescha A, et al. In vivo study on the biodistribution of silica particles in the bodies of rats[J]. Advances in Clinical and Experimental Medicine, 201221(1):13-18,

    Google Scholar

    [109] Guo M, Zou X, Hao R, et al. Fabrication of high surface area mesoporous silicon via magnesiothermic reduction for drug delivery[J]. Microporous & Mesoporous Materials, 2011, 142(1):194-201.

    Google Scholar

    [110] Maher S, Alsawat M, Kumeria T, et al. Microcarriers:luminescent silicon diatom replicas:self-reporting and degradable drug carriers with biologically derived shape for sustained delivery of therapeutics[J]. Advanced Functional Materials, 2015, 25(32):5240. doi: 10.1002/adfm.201570218

    CrossRef Google Scholar

    [111] Maher S, Kumeria T, Wang Y, et al. From the mine to cancer therapy:natural and biodegradable theranostic silicon nanocarriers from diatoms for sustained delivery of chemotherapeutics[J]. Advanced Healthcare Materials, 2016, 5(20):2667-2678. doi: 10.1002/adhm.201600688

    CrossRef Google Scholar

    [112] Le T D, Bonani W, Speranza G, et al. Processing and characterization of diatom nanoparticles and microparticles as potential source of silicon for bone tissue engineering[J]. Materials Science & Engineering C Materials for Biological Applications, 2016, 59:471-479.

    Google Scholar

    [113] Cicco S R, Vona D, De Giglio E, et al. Chemically modified diatoms biosilica for bone cell growth with combined drug-delivery and antioxidant properties[J]. Chempluschem, 2015, 80(7):1104-1112. doi: 10.1002/cplu.201402398

    CrossRef Google Scholar

    [114] Chao F, Jing L, Wu G S, et al. Chitosan coated diatom silica as hemostatic agent for haemorrhage control[J]. Acs Applied Materials & Interfaces, 2016, 8(50):34234-34243.

    Google Scholar

    [115] Fuhrmann T, Landwehr S, Rharbikucki M E, et al. Diatoms as living photonic crystals[J]. Applied Physics B, 2004, 78(3-4):257-260. doi: 10.1007/s00340-004-1419-4

    CrossRef Google Scholar

    [116] Yamanaka S, Yano R, Usami H, et al. Optical properties of diatom silica frustule with special reference to blue light[J]. Journal of Applied Physics, 2008, 103(7):074701. doi: 10.1063/1.2903342

    CrossRef Google Scholar

    [117] Noyes, Joseph, Sumper, et al. Light manipulation in a marine diatom[J]. Journal of Materials Research, 2008, 23(12):3229-3235. doi: 10.1557/JMR.2008.0381

    CrossRef Google Scholar

    [118] Di Caprio G, Coppola G, De S L, et al. Shedding light on diatom photonics by means of digital holography[J]. Journal of Biophotonics, 2014, 7(5):341-350. doi: 10.1002/jbio.201200198

    CrossRef Google Scholar

    [119] Butcher K S A, Ferris J M, Phillips M R, et al. A luminescence study of porous diatoms[J]. Materials Science & Engineering C Biomimetic & Supramolecular Systems, 2005, 25(5):658-663.

    Google Scholar

    [120] Bismuto A, Setaro A, Maddalena P, et al. Marine diatoms as optical chemical sensors:A time-resolved study[J]. Sensors & Actuators B Chemical, 2008, 130(1):396-399.

    Google Scholar

    [121] De Stefano L, Maddalena P, Moretti L, et al. Nano-biosilica from marine diatoms:A brand new material for photonic applications[J]. Superlattices & Microstructures, 2009, 46(1):84-89.

    Google Scholar

    [122] Setaro A, Lettieri S, Maddalena P, et al. Highly sensitive optochemical gas detection by luminescent marine diatoms[J]. Applied Physics Letters, 2007, 91(5):051921. doi: 10.1063/1.2768027

    CrossRef Google Scholar

    [123] Lettieri S, Setaro A, Stefano L D, et al. The gas-detection properties of light-emitting diatoms[J]. Advanced Functional Materials, 2008, 18(8):1257-1264. doi: 10.1002/adfm.200701124

    CrossRef Google Scholar

    [124] Kong X, Xi Y, Le Duff P, et al. Detecting explosive molecules from nanoliter solution:A new paradigm of SERS sensing on hydrophilic photonic crystal biosilica[J]. Biosensors and Bioelectronics, 2017, 88:63-70. doi: 10.1016/j.bios.2016.07.062

    CrossRef Google Scholar

    [125] Ren F, Campbell J, Rorrer G L, et al. Surface-enhanced Raman spectroscopy sensors from nanobiosilica with self-assembled plasmonic nanoparticles[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(3):127-132. doi: 10.1109/JSTQE.2014.2301016

    CrossRef Google Scholar

    [126] Ren F, Campbell J, Wang X, et al. Enhancing surface plasmon resonances of metallic nanoparticles by diatom biosilica[J]. Optics Express, 2013, 21(13):15308-15313. doi: 10.1364/OE.21.015308

    CrossRef Google Scholar

    [127] Kong X, Squire K, Li E, et al. Chemical and biological sensing using diatom photonic crystal biosilica with in-situ growth plasmonic nanoparticles[J]. IEEE Transactions on Nanobioscience, 2016, 15(8):828-834. doi: 10.1109/TNB.2016.2636869

    CrossRef Google Scholar

    [128] Lin K-C, Kunduru V, Bothara M, et al. Biogenic nanoporous silica-based sensor for enhanced electrochemical detection of cardiovascular biomarkers proteins[J]. Biosensors and Bioelectronics, 2010, 25(10):2336-2342. doi: 10.1016/j.bios.2010.03.032

    CrossRef Google Scholar

    [129] Kabiri S, Kurkuri M D, Kumeria T, et al. Frit-free PDMS microfluidic device for chromatographic separation and on-chip detection[J]. RSC Advances, 2014, 4(29):15276-15280. doi: 10.1039/C4RA01393J

    CrossRef Google Scholar

    [130] Losic D, Mitchell J G, Lal R, et al. Rapid fabrication of micro-and nanoscale patterns by replica molding from diatom biosilica[J]. Advanced Functional Materials, 2007, 17(14):2439-2446. doi: 10.1002/adfm.200600872

    CrossRef Google Scholar

    [131] 郑水林, 孙志明, 胡志波等.中国硅藻土资源及加工利用现状与发展趋势[J].地学前缘, 2014, 21(5):274-280.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views(2092) PDF downloads(71) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint