Citation: | ZHUANG Guanzheng, DENG Liangliang, DU Peixin, YUAN Peng, LIU Dong. Building and Applications of Diatom Silica-Based Advanced Materials[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 121-133. doi: 10.13779/j.cnki.issn1001-0076.2019.06.017 |
The formation, structures and properties of diatomaceous opal were briefly reviewed. Due to the unique and biogenic nature, plenty of advanced materials based on diatomaceous opal were proposed and had been investigated in the past years. Herein, the building and applications of diatomaceous opal-based materials in the fields of environmental treatment, nano energies (such as lithium ion batteries, supercapacitors, solar cells, hydrogen and thermal storage) and biomedical uses (e.g., drug delivery and controlled release, tissue engineering, hemorrhage control and biosensing) were summarized. The roles and working mechanisms of diatomaceous opal were also discussed. In addition, we also discussed the perspectives of the applications of diatomaceous opal-based advanced materials.
[1] |
袁巍巍.硅藻土基多孔矿物复合材料制备及其对有机污染物的吸附/催化性研究[D].广州: 中国科学院研究生院(广州地球化学研究所), 2016. |
[2] |
袁鹏.硅藻土的提纯及其表面羟基、酸位研究[D].广州: 中国科学院广州地球化学研究所, 2001. |
[3] | 史家远, 姚奇志, 周根陶.硅藻细胞壁硅化过程中有机质-矿物的相互作用[J].高校地质学报, 2011, 17(1):76-85. doi: 10.3969/j.issn.1006-7493.2011.01.010 |
[4] | Maher S, Kumeria T, Aw M S, et al. Diatom silica for biomedical applications:Recent progress and advances[J]. Advanced Healthcare Materials, 2018, 7(19):1800552. doi: 10.1002/adhm.201800552 |
[5] | Liu D, Yuan P, Tian Q, et al. Lake sedimentary biogenic silica from diatoms constitutes a significant global sink for aluminium[J]. Nature Communications, 2019, 10(1):1-7. doi: 10.1038/s41467-018-07882-8 |
[6] | Losic D, Mitchell J G, Voelcker N H. Diatomaceous lessons in nanotechnology and advanced materials[J]. Advanced Materials, 2009, 21(29):2947-2958. doi: 10.1002/adma.200803778 |
[7] | Yuan P, Liu D, Zhou J, et al. Identification of the occurrence of minor elements in the structure of diatomaceous opal using FIB and TEM-EDS[J]. American Mineralogist, 2019, 104(9):1323-1335. doi: 10.2138/am-2019-6917 |
[8] | 袁鹏, 吴大清.硅藻土在一些高附加值产品中的应用及其基础研究[J].矿物岩石, 2000, 20(1):101-104. |
[9] | Losic D. Diatom nanotechnology[M]. Cambridge:Royal Society of Chemistry, 2017. |
[10] | Zhao Y, Tian G, Duan X, et al. Environmental applications of diatomite minerals in removing heavy metals from water[J]. Industrial & Engineering Chemistry Research, 2019, 58(27):11638-11652. |
[11] | Bera A, Trivedi J S, Kumar S B, et al. Anti-organic fouling and anti-biofouling poly (Piperazineamide) thin film nanocomposite membranes for low pressure removal of heavy metal ions[J]. Journal of Hazardous Materials, 2018, 343:86-97. doi: 10.1016/j.jhazmat.2017.09.016 |
[12] | Lin Q, Liu E, Zhang E, et al. Reconstruction of atmospheric trace metals pollution in southwest China using sediments from a large and deep alpine lake:Historical trends, sources and sediment focusing[J]. Science of the total environment, 2018, 613:331-341. |
[13] | Yuan P, Liu D, Tan D-Y, et al. Surface silylation of mesoporous/macroporous diatomite (Diatomaceous earth) and its function in Cu (Ⅱ) adsorption:the effects of heating pretreatment[J]. Microporous and mesoporous materials, 2013, 170:9-19. doi: 10.1016/j.micromeso.2012.11.030 |
[14] | Alyosef H A, Ibrahim S, Welscher J, et al. Effect of acid treatment on the chemical composition and the structure of egyptian diatomite[J]. International Journal of Mineral Processing, 2014, 132:17-25. doi: 10.1016/j.minpro.2014.09.001 |
[15] | Mohamed E A, Selim A Q, Zayed A M, et al. Enhancing adsorption capacity of egyptian diatomaceous earth by thermo-chemical purification:methylene blue uptake[J]. Journal of Colloid and Interface Science, 2019, 534:408-419. doi: 10.1016/j.jcis.2018.09.024 |
[16] | Al-Degs Y, Khraisheh M, Tutunji M. Sorption of lead Ions on diatomite and manganese oxides modified diatomite[J]. Water Research, 2001, 35(15):3724-3728. doi: 10.1016/S0043-1354(01)00071-9 |
[17] | Caliskan N, Kul A R, Alkan S, et al. Adsorption of zinc (Ⅱ) on diatomite and manganese-oxide-modified diatomite:a kinetic and equilibrium study[J]. Journal of Hazardous Materials, 2011, 193:27-36. doi: 10.1016/j.jhazmat.2011.06.058 |
[18] | Li E, Zeng X. Sorption of Cr (Ⅲ) Ion from aqueous solution by two kinds of modified diatomite[J]. Water Science and Technology, 2012, 66(6):1340-1347. doi: 10.2166/wst.2012.327 |
[19] | Li S, Li D, Su F, et al. Uniform surface modification of diatomaceous earth with amorphous manganese oxide and its adsorption characteristics for lead ions[J]. Applied Surface Science, 2014, 317:724-729. doi: 10.1016/j.apsusc.2014.08.184 |
[20] | Al-Degs Y S, Tutunju M F, Shawabkeh R A. The feasibility of using diatomite and Mn-diatomite for remediation of Pb2+, Cu2+, and Cd2+from water[J]. Separation Science and Technology, 2000, 35(14):2299-2310. doi: 10.1081/SS-100102103 |
[21] | Du Y, Wang L, Wang J, et al. Flower-, Wire-, and Sheet-Like MnO2-Deposited Diatomites:Highly efficient absorbents for the removal of Cr (Ⅵ)[J]. Journal of Environmental Sciences, 2015, 29:71-81. doi: 10.1016/j.jes.2014.06.047 |
[22] | Du Y, Zheng G, Wang J, et al. MnO2 nanowires in situ grown on diatomite:highly efficient absorbents for the removal of Cr (Ⅵ) and As (Ⅴ)[J]. Microporous and Mesoporous Materials, 2014, 200:27-34. doi: 10.1016/j.micromeso.2014.07.043 |
[23] | Du Y, Fan H, Wang L, et al. α-Fe2O3 nanowires deposited diatomite:highly efficient absorbents for the removal of arsenic[J]. Journal of Materials Chemistry A, 2013, 1(26):7729-7737. doi: 10.1039/c3ta11124e |
[24] | Knoerr R, Brendlé J, Lebeau B, et al. Preparation of ferric oxide modified diatomite and its application in the remediation of As (Ⅲ) species from solution[J]. Microporous and Mesoporous Materials, 2013, 169:185-191. doi: 10.1016/j.micromeso.2012.09.036 |
[25] | Puente-Urbina A, Montero-Campos V. Porous materials modified with Fe3O4 nanoparticles for arsenic removal in drinking water[J]. Water, Air, & Soil Pollution, 2017, 228(9):374. |
[26] | Wu C-C, Wang Y-C, Lin T-F, et al. Removal of arsenic from waste water using surface modified diatomite[J]. Journal of the Chinese Institute of Environmental Engineering, 2005, 15(4):255-261. |
[27] | Chang F, Qu J, Liu H, et al. Fe-Mn binary oxide incorporated into diatomite as an adsorbent for arsenite removal:preparation and evaluation[J]. Journal of Colloid and Interface Science, 2009, 338(2):353-358. doi: 10.1016/j.jcis.2009.06.049 |
[28] | Caner N, Sarı A, TüZen M. Adsorption characteristics of mercury (Ⅱ) ions from aqueous solution onto chitosan-coated diatomite[J]. Industrial & Engineering Chemistry Research, 2015, 54(30):7524-7533. |
[29] | Yu Z-H, Zhang Y-F, Zhai S-R, et al. Amino-modified mesoporous sorbents for efficient Cd (Ⅱ) adsorption prepared using non-chemical diatomite as precursor[J]. Journal of Sol-Gel Science and Technology, 2016, 78(1):110-119. doi: 10.1007/s10971-015-3933-8 |
[30] | Abu-Zurayk R A, Al Bakain R Z, Hamadneh I, et al. Adsorption of Pb (Ⅱ), Cr (Ⅲ) and Cr (Ⅵ) from aqueous solution by surfactant-modified diatomaceous earth:Equilibrium, kinetic and thermodynamic modeling studies[J]. International Journal of Mineral Processing, 2015, 140:79-87. doi: 10.1016/j.minpro.2015.05.004 |
[31] | Yu Y, Addai-Mensah J, Losic D. Functionalized diatom silica microparticles for removal of mercury ions[J]. Science and Technology of Advanced Materials, 2012, 13(1):015008. doi: 10.1088/1468-6996/13/1/015008 |
[32] | Dahn J R, Zheng T, Liu Y, et al. Mechanisms for lithium insertion in carbonaceous materials[J]. Science, 1995, 270(5236):590-593. doi: 10.1126/science.270.5236.590 |
[33] | Etacheri V, Marom R, Elazari R, et al. Challenges in the development of advanced Li-ion batteries:a review[J]. Energy & Environmental Science, 2011, 4(9):3243-3262. |
[34] | Poizot P, Laruelle S, Grugeon S, et al. Searching for new anode materials for the Li-ion technology:time to deviate from the usual path[J]. Journal of Power Sources, 2001, 97:235-239. |
[35] | Wen C J, Huggins R A. Thermodynamic study of the lithium-tin system[J]. Journal of the Electrochemical Society, 1981, 128(6):1181-1187. doi: 10.1149/1.2127590 |
[36] | Bao Z, Weatherspoon M R, Shian S, et al. Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas[J]. Nature, 2007, 446(7132):172-175. doi: 10.1038/nature05570 |
[37] | Arunmetha S, Vinoth M, Srither S R, et al. Study on production of silicon nanoparticles from quartz sand for hybrid solar cell applications[J]. Journal of Electronic Materials, 2017, 47(1):493-502. |
[38] | Campbell B, Ionescu R, Tolchin M, et al. Carbon-coated, diatomite-derived nanosilicon as a high rate capable Li-ion battery anode[J]. Scitific Reports, 2016, 6:33050. doi: 10.1038/srep33050 |
[39] | Wang M-S, Fan L-Z, Huang M, et al. Conversion of diatomite to porous Si/C composites as promising anode materials for lithium-ion batteries[J]. Journal of Power Sources, 2012, 219:29-35. doi: 10.1016/j.jpowsour.2012.06.102 |
[40] | Zhang Y X, Huang M, Li F, et al. One-pot synthesis of hierarchical MnO2-modified diatomites for electrochemical capacitor electrodes[J]. Journal of Power Sources, 2014, 246:449-456. doi: 10.1016/j.jpowsour.2013.07.115 |
[41] | Zhang Y X, Li F, Huang M, et al. Hierarchical NiO moss decorated diatomites via facile and templated method for high performance supercapacitors[J]. Materials Letters, 2014, 120:263-266. doi: 10.1016/j.matlet.2014.01.091 |
[42] | Guo X L, Kuang M, Li F, et al. Engineering of three dimensional (3-D) diatom@TiO2@MnO2 composites with enhanced supercapacitor performance[J]. Electrochimica Acta, 2016, 190:159-167. doi: 10.1016/j.electacta.2015.12.178 |
[43] | Wen Z Q, Li M, Li F, et al. Morphology-controlled MnO2-graphene oxide-diatomaceous earth 3-dimensional (3D) composites for high-performance supercapacitors[J]. Dalton Transactions, 2016, 45(3):936-942. doi: 10.1039/C5DT04082E |
[44] | Li F, Xing Y, Huang M, et al. MnO2 nanostructures with three-dimensional (3D) morphology replicated from diatoms for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(15):7855-7861. doi: 10.1039/C5TA00634A |
[45] | Sun X W, Zhang Y X, Losic D. Diatom silica, an emerging biomaterial for energy conversion and storage[J]. Journal of Materials Chemistry A, 2017, 5(19):8847-59. doi: 10.1039/C7TA02045G |
[46] | Baxter J, Bian Z, Gang C, et al. Nanoscale design to enable the revolution in renewable energy[J]. Energy & Environmental Science, 2009, 2(6):559-588. |
[47] | Chen X, Mao S S. Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications[J]. Chemical Reviews, 2017, 107(7):2891-2959. |
[48] | Gonalves L M, De Zea Bermudez V, Ribeiro H A, et al. Dye-sensitized solar cells:A safe bet for the future[J]. Energy & Environmental Science, 2008, 1(6):655-667. |
[49] | Hernández-Alonso M D, Fresno F, Suárez S, et al. Development of alternative photocatalysts to TiO2:challenges and opportunities[J]. Energy & Environmental Science, 2009, 2(12):1231-1257. |
[50] | Inoue Y. Photocatalytic water splitting by RuO2 -loaded metal oxides and nitrides with d 0-and d 10-related electronic configurations[J]. Energy & Environmental Science, 2009, 2(4):364. |
[51] | Chandrasekaran S, Sweetman M J, Kant K, et al. Silicon diatom frustules as nanostructured photoelectrodes[J]. Chemical Communications, 2014, 50(72):10441-10444. doi: 10.1039/C4CC04470C |
[52] | O'regan B, Grätzel M. Low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353(6346):737-740. doi: 10.1038/353737a0 |
[53] | Nazeeruddin M K, Kay A, Rodicio I, et al. Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (Ⅱ) charge-transfer sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes[J]. Journal of the American Chemical Society, 1993, 115(14):6382-6390. doi: 10.1021/ja00067a063 |
[54] | Zhang Q, Dandeneau C S, Zhou X, et al. ZnO nanostructures for dye-sensitized solar cells[J]. Advanced Materials, 2009, 21(41):4087-4108. doi: 10.1002/adma.200803827 |
[55] | Duong T-T, Choi H-J, He Q-J, et al. Enhancing the efficiency of dye sensitized solar cells with an SnO2 blocking layer grown by nanocluster deposition[J]. Journal of Alloys and Compounds, 2013, 561:206-210. doi: 10.1016/j.jallcom.2013.01.188 |
[56] | Barea E, Xu X, Gonzálezpedro V, et al. Origin of efficiency enhancement in Nb2O5 coated titanium dioxide nanorod based dye sensitized solar cells[J]. Energy & Environmental Science, 2011, 4(9):3414-3419. |
[57] | Losic D, Triani G, Evans P J, et al. Controlled pore structure modification of diatoms by atomic layer deposition of TiO2[J]. Journal of Materials Chemistry, 2006, 16(41):4029-4034. doi: 10.1039/b610188g |
[58] | Hoshikawa T, Ikebe T, Yamada M, et al. Preparation of silica-modified TiO2 and application to dye-sensitized solar cells[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2006, 184(1-2):78-85. doi: 10.1016/j.jphotochem.2006.04.001 |
[59] | Park K H, Li H, Dhayal M, et al. Performance improvement of dye-sensitized glass powder added TiO2 solar cells[J]. Journal of Nanoscience and Nanotechnology, 2008, 8(10):5252-5256. doi: 10.1166/jnn.2008.1024 |
[60] | Fuhrmann T, Landwehr S, El Rharbi-Kucki M, et al. Diatoms as living photonic crystals[J]. Applied Physics B, 2004, 78(3-4):257-260. doi: 10.1007/s00340-004-1419-4 |
[61] | Tachibana Y, Akiyama H Y, Kuwabata S. Optical simulation of transmittance into a nanocrystalline anatase TiO2 film for solar cell applications[J]. Solar Energy Materials and Solar Cells, 2007, 91(2-3):201-206. doi: 10.1016/j.solmat.2006.09.001 |
[62] | Huang D-R, Jiang Y-J, Liou R-L, et al. Enhancing the efficiency of dye-sensitized solar cells by adding diatom frustules into TiO2 working electrodes[J]. Applied Surface Science, 2015, 347:64-72. doi: 10.1016/j.apsusc.2015.04.064 |
[63] | Jin J, Zheng C, Yang H. Natural diatomite modified as novel hydrogen storage material[J]. Functional Materials Letters, 2014, 7(3):1450027. doi: 10.1142/S1793604714500271 |
[64] | Milovanović S, Matović L, Drvendžija M, et al. Hydrogen storage properties of MgH2- diatomite composites obtained by high-energy ball milling[J]. Journal of Microscopy, 2008, 232(3):522-525. doi: 10.1111/j.1365-2818.2008.02113.x |
[65] | Dincer I. On thermal energy storage systems and applications in buildings[J]. Energy and Buildings, 2002, 34(4):377-388. doi: 10.1016/S0378-7788(01)00126-8 |
[66] | Khudhair A M, Farid M M. A review on energy conservation in building applications with thermal storage by latent heat using phase change materials[J]. Energy conversion and management, 2004, 45(2):263-275. doi: 10.1016/S0196-8904(03)00131-6 |
[67] | Liu C-P, Seeds A. Wireless-over-fiber technology-bringing the wireless world indoors[J]. Optics and Photonics News, 2010, 21(11):28-33. doi: 10.1364/OPN.21.11.000028 |
[68] | Tyagi V, Kaushik S, Tyagi S, et al. Development of phase change materials based microencapsulated technology for buildings:a review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(2):1373-1391. doi: 10.1016/j.rser.2010.10.006 |
[69] | Regin A F, Solanki S, Saini J. Heat transfer characteristics of thermal energy storage system using PCM capsules:a review[J]. Renewable and Sustainable Energy Reviews, 2008, 12(9):2438-2458. doi: 10.1016/j.rser.2007.06.009 |
[70] | Zhou D, Zhao C-Y, Tian Y. Review on thermal energy storage with phase change materials (PCMs) in building applications[J]. Applied Energy, 2012, 92:593-605. doi: 10.1016/j.apenergy.2011.08.025 |
[71] | Memon S A. Phase change materials integrated in building walls:A state of the art review[J]. Renewable and Sustainable Energy Reviews, 2014, 31:870-906. doi: 10.1016/j.rser.2013.12.042 |
[72] | Sarier N, Onder E. Organic phase change materials and their textile applications:an overview[J]. Thermochimica Acta, 2012, 540:7-60. doi: 10.1016/j.tca.2012.04.013 |
[73] | Zhang Z, Shi G, Wang S, et al. Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material[J]. Renewable Energy, 2013, 50:670-675. doi: 10.1016/j.renene.2012.08.024 |
[74] | Sarı A, Biçer A. Thermal energy storage properties and thermal reliability of some fatty acid esters/building material composites as novel form-stable PCMs[J]. Solar Energy Materials and Solar Cells, 2012, 101:114-122. doi: 10.1016/j.solmat.2012.02.026 |
[75] | Lafdi K, Mesalhy O, Elgafy A. Graphite foams infiltrated with phase change materials as alternative materials for space and terrestrial thermal energy storage applications[J]. Carbon, 2008, 46(1):159-168. doi: 10.1016/j.carbon.2007.11.003 |
[76] | Li M, Wu Z, Kao H, et al. Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material[J]. Energy Conversion and Management, 2011, 52(11):3275-3281. doi: 10.1016/j.enconman.2011.05.015 |
[77] | Jiao C, Ji B, Fang D. Preparation and properties of lauric acid-stearic acid/expanded perlite composite as phase change materials for thermal energy storage[J]. Materials Letters, 2012, 67(1):352-354. doi: 10.1016/j.matlet.2011.09.099 |
[78] | Li M, Wu Z, Chen M. Preparation and properties of gypsum-based heat storage and preservation material[J]. Energy and Buildings, 2011, 43(9):2314-2319. doi: 10.1016/j.enbuild.2011.05.016 |
[79] | Li M, Kao H, Wu Z, et al. Study on preparation and thermal property of binary fatty acid and the binary fatty acids/diatomite composite phase change materials[J]. Applied Energy, 2011, 88(5):1606-1612. doi: 10.1016/j.apenergy.2010.11.001 |
[80] | Karaman S, Karaipekli A, Sarı A, et al. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2011, 95(7):1647-1653. doi: 10.1016/j.solmat.2011.01.022 |
[81] | Karaipekli A, Sarı A. Capric-myristic acid/vermiculite composite as form-stable phase change material for thermal energy storage[J]. Solar Energy, 2009, 83(3):323-332. doi: 10.1016/j.solener.2008.08.012 |
[82] | Karaipekli A, Sarı A. Preparation, thermal properties and thermal reliability of eutectic mixtures of fatty acids/expanded vermiculite as novel form-stable composites for energy storage[J]. Journal of Industrial and Engineering Chemistry, 2010, 16(5):767-773. doi: 10.1016/j.jiec.2010.07.003 |
[83] | Li M, Wu Z, Kao H. Study on preparation, structure and thermal energy storage property of capric-palmitic acid/attapulgite composite phase change materials[J]. Applied Energy, 2011, 88(9):3125-3132. doi: 10.1016/j.apenergy.2011.02.030 |
[84] | Xu B, Li Z. Performance of novel thermal energy storage engineered cementitious composites incorporating a paraffin/diatomite composite phase change material[J]. Applied Energy, 2014, 121:114-122. doi: 10.1016/j.apenergy.2014.02.007 |
[85] | Xu B, Li Z. Paraffin/diatomite/multi-wall carbon nanotubes composite phase change material tailor-made for thermal energy storage cement-based composites[J]. Energy, 2014, 72:371-380. doi: 10.1016/j.energy.2014.05.049 |
[86] | Li X, Sanjayan J G, Wilson J L. Fabrication and stability of form-stable diatomite/paraffin phase change material composites[J]. Energy and Buildings, 2014, 76:284-394. doi: 10.1016/j.enbuild.2014.02.082 |
[87] | Li M, Wu Z, Kao H. Study on preparation and thermal properties of binary fatty acid/diatomite shape-stabilized phase change materials[J]. Solar Energy Materials and Solar Cells, 2011, 95(8):2412-2416. doi: 10.1016/j.solmat.2011.04.017 |
[88] | Ferrari M. Cancer nanotechnology:opportunities and challenges[J]. Nature Reviews Cancer, 2005, 5(3):161-171. doi: 10.1038/nrc1566 |
[89] | Wagner V, Dullaart A, Bock A-K, et al. The emerging nanomedicine landscape[J]. Nature Biotechnology, 2006, 24(10):1211. doi: 10.1038/nbt1006-1211 |
[90] | Shahbazi M A, Herranz B, Santos H A. Nanostructured porous Si-based nanoparticles for targeted drug delivery[J]. Biomatter, 2012, 2(4):296-312. doi: 10.4161/biom.22347 |
[91] | Delalat B, Sheppard V C, Rasi G S, et al. Targeted drug delivery using genetically engineered diatom biosilica[J]. Nature Communications, 2015, 6:8791. doi: 10.1038/ncomms9791 |
[92] | Anderson M W, Holmes S M, Hanif N, et al. Hierarchical pore structures through diatom zeolitization[J]. Angewandte Chemie International Edition, 2000, 39(15):2707-2710. doi: 10.1002/1521-3773(20000804)39:15<2707::AID-ANIE2707>3.0.CO;2-M |
[93] | Rosi N L, Thaxton C S, Mirkin C A. Control of nanoparticle assembly by using DNA-modified diatom templates[J]. Angewandte Chemie International Edition, 2004, 43(41):5500-5503. doi: 10.1002/anie.200460905 |
[94] | Aw M S, Simovic S, Addai-Mensah J, et al. Silica microcapsules from diatoms as new carrier for delivery of therapeutics[J]. Nanomedicine, 2011, 6(7):1159-1173. doi: 10.2217/nnm.11.29 |
[95] | Aw M S, Simovic S, Yu Y, et al. Porous silica microshells from diatoms as biocarrier for drug delivery applications[J]. Powder technology, 2012, 223:52-58. doi: 10.1016/j.powtec.2011.04.023 |
[96] | Zhang H, Shahbazi M-A, Mäkilä E M, et al. Diatom silica microparticles for sustained release and permeation enhancement following oral delivery of prednisone and mesalamine[J]. Biomaterials, 2013, 34(36):9210-9219. doi: 10.1016/j.biomaterials.2013.08.035 |
[97] | Aw M S, Bariana M, Yu Y, et al. Surface-functionalized diatom microcapsules for drug delivery of water-insoluble drugs[J]. Journal of biomaterials applications, 2013, 28(2):163-174. |
[98] | Bariana M, Aw M S, Losic D. Tailoring morphological and interfacial properties of diatom silica microparticles for drug delivery applications[J]. Advanced Powder Technology, 2013, 24(4):757-763. doi: 10.1016/j.apt.2013.03.015 |
[99] | Losic D, Yu Y, Aw M S, et al. Surface functionalisation of diatoms with dopamine modified iron-oxide nanoparticles:toward magnetically guided drug microcarriers with biologically derived morphologies[J]. Chemical Communications, 2010, 46(34):6323-6325. doi: 10.1039/c0cc01305f |
[100] | Todd T, Zhen Z, Tang W, et al. Iron oxide nanoparticle encapsulated diatoms for magnetic delivery of small molecules to tumors[J]. Nanoscale, 2014, 6(4):2073-2076. doi: 10.1039/c3nr05623f |
[101] | Kumeria T, Bariana M, Altalhi T, et al. Graphene oxide decorated diatom silica particles as new nano-hybrids:towards smart natural drug microcarriers[J]. Journal of Materials Chemistry B, 2013, 1(45):6302-6311. doi: 10.1039/c3tb21051k |
[102] | Terracciano M, Shahbazi M A, Correia A, et al. Surface bioengineering of diatomite based nanovectors for efficient intracellular uptake and drug delivery[J]. Nanoscale, 2015, 7(47):20063-20074. doi: 10.1039/C5NR05173H |
[103] | Rea I, Martucci N M, De S L, et al. Diatomite biosilica nanocarriers for siRNA transport inside cancer cells[J]. BBA-General Subjects, 2014, 1840(12):3393-3403. doi: 10.1016/j.bbagen.2014.09.009 |
[104] | Cauda V, Schlossbauer A, Bein T. Bio-degradation study of colloidal mesoporous silica nanoparticles:Effect of surface functionalization with organo-silanes and poly(ethylene glycol)[J]. Microporous & Mesoporous Materials, 2010, 132(1):60-71. |
[105] | Hao N, Liu H, Li L, et al. In vitro degradation behavior of silica nanoparticles under physiological conditions[J]. Journal of Nanoscience & Nanotechnology, 2012, 12(8):6346. |
[106] | Martinez J O, Chiappini C, Ziemys A, et al. Engineering multi-stage nanovectors for controlled degradation andtunable release kinetics[J]. Biomaterials, 2013, 34(33):8469-8477. doi: 10.1016/j.biomaterials.2013.07.049 |
[107] | Park J H, Gu L, Von M G, et al. Biodegradable luminescent porous silicon nanoparticles for in vivo applications[J]. Nature Materials, 2009, 8(4):331-336. |
[108] | Borak B, Biernat P, Prescha A, et al. In vivo study on the biodistribution of silica particles in the bodies of rats[J]. Advances in Clinical and Experimental Medicine, 201221(1):13-18, |
[109] | Guo M, Zou X, Hao R, et al. Fabrication of high surface area mesoporous silicon via magnesiothermic reduction for drug delivery[J]. Microporous & Mesoporous Materials, 2011, 142(1):194-201. |
[110] | Maher S, Alsawat M, Kumeria T, et al. Microcarriers:luminescent silicon diatom replicas:self-reporting and degradable drug carriers with biologically derived shape for sustained delivery of therapeutics[J]. Advanced Functional Materials, 2015, 25(32):5240. doi: 10.1002/adfm.201570218 |
[111] | Maher S, Kumeria T, Wang Y, et al. From the mine to cancer therapy:natural and biodegradable theranostic silicon nanocarriers from diatoms for sustained delivery of chemotherapeutics[J]. Advanced Healthcare Materials, 2016, 5(20):2667-2678. doi: 10.1002/adhm.201600688 |
[112] | Le T D, Bonani W, Speranza G, et al. Processing and characterization of diatom nanoparticles and microparticles as potential source of silicon for bone tissue engineering[J]. Materials Science & Engineering C Materials for Biological Applications, 2016, 59:471-479. |
[113] | Cicco S R, Vona D, De Giglio E, et al. Chemically modified diatoms biosilica for bone cell growth with combined drug-delivery and antioxidant properties[J]. Chempluschem, 2015, 80(7):1104-1112. doi: 10.1002/cplu.201402398 |
[114] | Chao F, Jing L, Wu G S, et al. Chitosan coated diatom silica as hemostatic agent for haemorrhage control[J]. Acs Applied Materials & Interfaces, 2016, 8(50):34234-34243. |
[115] | Fuhrmann T, Landwehr S, Rharbikucki M E, et al. Diatoms as living photonic crystals[J]. Applied Physics B, 2004, 78(3-4):257-260. doi: 10.1007/s00340-004-1419-4 |
[116] | Yamanaka S, Yano R, Usami H, et al. Optical properties of diatom silica frustule with special reference to blue light[J]. Journal of Applied Physics, 2008, 103(7):074701. doi: 10.1063/1.2903342 |
[117] | Noyes, Joseph, Sumper, et al. Light manipulation in a marine diatom[J]. Journal of Materials Research, 2008, 23(12):3229-3235. doi: 10.1557/JMR.2008.0381 |
[118] | Di Caprio G, Coppola G, De S L, et al. Shedding light on diatom photonics by means of digital holography[J]. Journal of Biophotonics, 2014, 7(5):341-350. doi: 10.1002/jbio.201200198 |
[119] | Butcher K S A, Ferris J M, Phillips M R, et al. A luminescence study of porous diatoms[J]. Materials Science & Engineering C Biomimetic & Supramolecular Systems, 2005, 25(5):658-663. |
[120] | Bismuto A, Setaro A, Maddalena P, et al. Marine diatoms as optical chemical sensors:A time-resolved study[J]. Sensors & Actuators B Chemical, 2008, 130(1):396-399. |
[121] | De Stefano L, Maddalena P, Moretti L, et al. Nano-biosilica from marine diatoms:A brand new material for photonic applications[J]. Superlattices & Microstructures, 2009, 46(1):84-89. |
[122] | Setaro A, Lettieri S, Maddalena P, et al. Highly sensitive optochemical gas detection by luminescent marine diatoms[J]. Applied Physics Letters, 2007, 91(5):051921. doi: 10.1063/1.2768027 |
[123] | Lettieri S, Setaro A, Stefano L D, et al. The gas-detection properties of light-emitting diatoms[J]. Advanced Functional Materials, 2008, 18(8):1257-1264. doi: 10.1002/adfm.200701124 |
[124] | Kong X, Xi Y, Le Duff P, et al. Detecting explosive molecules from nanoliter solution:A new paradigm of SERS sensing on hydrophilic photonic crystal biosilica[J]. Biosensors and Bioelectronics, 2017, 88:63-70. doi: 10.1016/j.bios.2016.07.062 |
[125] | Ren F, Campbell J, Rorrer G L, et al. Surface-enhanced Raman spectroscopy sensors from nanobiosilica with self-assembled plasmonic nanoparticles[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(3):127-132. doi: 10.1109/JSTQE.2014.2301016 |
[126] | Ren F, Campbell J, Wang X, et al. Enhancing surface plasmon resonances of metallic nanoparticles by diatom biosilica[J]. Optics Express, 2013, 21(13):15308-15313. doi: 10.1364/OE.21.015308 |
[127] | Kong X, Squire K, Li E, et al. Chemical and biological sensing using diatom photonic crystal biosilica with in-situ growth plasmonic nanoparticles[J]. IEEE Transactions on Nanobioscience, 2016, 15(8):828-834. doi: 10.1109/TNB.2016.2636869 |
[128] | Lin K-C, Kunduru V, Bothara M, et al. Biogenic nanoporous silica-based sensor for enhanced electrochemical detection of cardiovascular biomarkers proteins[J]. Biosensors and Bioelectronics, 2010, 25(10):2336-2342. doi: 10.1016/j.bios.2010.03.032 |
[129] | Kabiri S, Kurkuri M D, Kumeria T, et al. Frit-free PDMS microfluidic device for chromatographic separation and on-chip detection[J]. RSC Advances, 2014, 4(29):15276-15280. doi: 10.1039/C4RA01393J |
[130] | Losic D, Mitchell J G, Lal R, et al. Rapid fabrication of micro-and nanoscale patterns by replica molding from diatom biosilica[J]. Advanced Functional Materials, 2007, 17(14):2439-2446. doi: 10.1002/adfm.200600872 |
[131] | 郑水林, 孙志明, 胡志波等.中国硅藻土资源及加工利用现状与发展趋势[J].地学前缘, 2014, 21(5):274-280. |
Various shapes and 3D structures of diatoms (scale bar 10 μm)
Morphology and elemental distribution of diatomaceous opal
Schematic presentation for the related mechanisms of modified diatomite for removal of Hg+[31]
Schematic illustration of the process of obtaining C-coated, DE-derived, porous Si structures for use as Li-ion anode active material
Electrochemical properties of diatom-derived nano Si-based electrodes
Schematic diagram showing the process of synthesis of diatom/MnO2 and 3-D MnO2 structures with replicated diatom's morphology
Schematic representation of magnesiothermic conversion ofdiatom frustules to nanostructured silicon and their application for photoelectrochemical energy conversion
(a) Schematic representation of covalent functionalization of diatoms frustule surface. (b) SEM images of the graphene oxide diatom nanohybrid prepared through electrostatic attachment.
(a) Schematic illustration showing DNR loading onto diatom silicon replicas and the change in luminescence properties at the different stages of the release process. (b) Photoluminescence spectra of silicon DE replicas after DNR loading, after 5 and 30 days of release regions. (c) Bar chart showing the intensity of luminescence measured from confocal microscope images after the different stages of the process