Citation: | BAI Haoyu, ZHAO Yunliang, WANG Wei, ZHANG Tingting, SONG Shaoxian. Exfoliating Preparation of Two-dimensional Montmorillonite Nanosheet and the Functional Applications[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 101-111. doi: 10.13779/j.cnki.issn1001-0076.2019.06.015 |
As a typical type of layered clay mineral, montmorillonite with excellent physicochemical properties can be separated into high-diameter-thickness lamellar monomers with two-dimensional structural characteristics. Common exfoliation methods can be divided into chemical method, mechanical method and chemical-mechanical method. Through the exfoliation process, the montmorillonite flakes with weak interlayer bonding can be separated and uniformly dispersed. The exfoliated nanosheets can be used for the preparation of advanced functional mineral materials such as environmental function materials, energy storage materials, flame retardant materials, nanofluidic channels and smart materials. In this paper, recent advances in the exfoliating preparation and functional applications of two-dimensional montmorillonite nanosheets are reviewed, thereby providing enlightening ideas for the further application and deepening study of layered clay minerals.
[1] | SKIPPER N T, SPOSITO G, SOPER A K. Surface geochemistry of the clay minerals[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7):3358-3364. doi: 10.1073/pnas.96.7.3358 |
[2] | Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials[J]. Nature, 2006, 442(7100):282-286. doi: 10.1038/nature04969 |
[3] | Geim A K. Graphene:status and prospects[J]. Science, 2009, 5934(324):1530-1534. |
[4] | Mas-Ballesté R G C G J. 2D materials:to graphene and beyond[J]. Nanoscale, 2011, 1(3):20-30. |
[5] | Bhimanapati G R, Lin Z, Meunier V, et al. Recent Advances in two-dimensional materials beyond graphene[J]. ACS Nano, 2015, 9(12):11509-11539. doi: 10.1021/acsnano.5b05556 |
[6] | Ling X, Lin Y, Ma Q, et al. Parallel stitching of 2D materials[J]. Advanced materials, 2016, 28(12):2322-2329. doi: 10.1002/adma.201505070 |
[7] | Bonaccorso F, Colombo L, Yu G, et al. 2D materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science, 2015, 347(6217):1246501. doi: 10.1126/science.1246501 |
[8] | Zhu T T, Zhou C H, Kabwe F B, et al. Exfoliation of montmorillonite and related properties of clay/polymer nanocomposites[J]. Applied Clay Science, 2019, 169:48-66. doi: 10.1016/j.clay.2018.12.006 |
[9] | Liu Z, Teng Y, Teng F, et al. Charge storage performances of micro-supercapacitor predominated by two-dimensional (2D) crystal structure[J]. Nano Energy, 2016, 27:58-67. doi: 10.1016/j.nanoen.2016.06.025 |
[10] | Zhang L, Yao H, Li Z, et al. Synthesis of delaminated layered double hydroxides and their assembly with graphene oxide for supercapacitor application[J]. Journal of Alloys and Compounds, 2017, 711:31-41. doi: 10.1016/j.jallcom.2017.03.348 |
[11] | Szendrei-Temesi K S O B. Lithium tin sulfide-a high-refractive-index 2D material for humidity-responsive photonic crystals[J]. Advanced functional materials, 2018, 14(28):1705740. |
[12] | Chauhan N, Chawla S, Pundir C S, et al. An electrochemical sensor for detection of neurotransmitter-acetylcholine using metal nanoparticles, 2D material and conducting polymer modified electrode[J]. Biosens Bioelectron, 2017, 89(Pt 1):377-383. |
[13] | Brigattia M F, Galanb E, Thengc B K G. Charpter 2 structure and mineralogy of clay minerals[J]. Development of clay science, 2006(1):19-86. |
[14] | Thomas A W L H. Adsorption studies on clay minerals Ⅸ. ion-exchange properties of natural and thermally altered montmorillonite[J]. Soil Science Society of America Journal, 1965, 3(29):627-651. |
[15] | 黄缓缓.金属阳离子对蒙脱石水化膨胀影响的试验研究[J].选煤技术, 2018(4):19-22. |
[16] | Zhou Y, LaChance A M, Smith A T, et al. Strategic design of clay-based multifunctional materials:from natural minerals to nanostructured membranes[J]. Advanced functional materials, 2019, 29(16):1807611. doi: 10.1002/adfm.201807611 |
[17] | Nicolosi V, Chhowalla M, Kanatzidis M G. Liquid exfoliation of layered materials[J]. Science, 2013, 6139(340):1226419. |
[18] | Coleman J N, Lotya M, O'Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017):568-571. doi: 10.1126/science.1194975 |
[19] | Park K H, Kim B H, Song S H, et al. Exfoliation of non-oxidized graphene flakes for scalable conductive film[J]. Nano letters, 2012, 12(6):2871-2876. doi: 10.1021/nl3004732 |
[20] | Gintert M J, Jana S C, Miller S G. A novel strategy for nanoclay exfoliation in thermoset polyimide nanocomposite systems[J]. Polymer, 2007, 48(14):4166-4173. doi: 10.1016/j.polymer.2007.05.053 |
[21] | Ang P K, Wang S, Bao Q, et al. High-throughput synthesis of graphene by intercalation-exfoliation of graphite oxide and study of ionic screening in graphene transistor[J]. ACS nano, 2009, 3(11):3587-3594. doi: 10.1021/nn901111s |
[22] | Cano-Márquez A G, Rodríguez-Macías F J, Campos-Delgado J, et al. Ex-MWNTs:graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes[J]. Nano letters, 2009, 9(4):1527-1533. doi: 10.1021/nl803585s |
[23] | Thasirisap E, Vittayakorn N, Seeharaj P. Surface modification of TiO2 particles with the sono-assisted exfoliation method[J]. Ultrasonics Sonochemistry, 2017, 39:733-740. doi: 10.1016/j.ultsonch.2017.06.002 |
[24] | Sanchez-Solis A, Garcia-Rejon A, Estrada M, et al. Properties of poly(ethylene terephthalate)-poly(ethylene naphthalene 2, 6-dicarboxylate) blends with montmorillonite clay[J]. Polymer international, 2005, 12(54):1669-1672. |
[25] | 郑翔, 孙海标, 张炫辉, 等.蒙脱石剥离方法的对比与选择[J].矿物学报, 2014, 34(3):427-432. |
[26] | Jiankun L, Yucai K, Zongneng Q, et al. Study on intercalation and exfoliation behavior of organoclays in epoxy resin[J]. Journal of Polymer Science Part B:Polymer Physics, 2000, 1(39):115-120. |
[27] | 吴选军, 袁继祖, 余永富.双官能团有机改性蒙脱石的制备及性能[J].非金属矿, 2009, 32(4):1-4. doi: 10.3969/j.issn.1000-8098.2009.04.001 |
[28] | Huang T, Chiou J, Wang Y, et al. Unusual exfoliation of layered silicate clays by non-aqueous amine diffusion mechanism[J]. Journal of Polymer Research, 2016, 23(8):1-7. |
[29] | 李存军, 卢红, 林茵茵, 等.蒙脱石的湿法机械球磨剥离[J].硅酸盐通报, 2016, 35(5):1372-1377. |
[30] | Bai H, Zhao Y, Zhang X, et al. Correlation of exfoliation performance with interlayer cations of montmorillonite in the preparation of two-dimensional nanosheets[J]. Journal of the American Ceramic Society, 2019, 102(7):3908-3922. doi: 10.1111/jace.16285 |
[31] | Bai H, Zhao Y, Wang W, et al. Effect of interlayer cations on exfoliating 2D montmorillonite nanosheets with high aspect ratio:From experiment to molecular calculation[J]. Ceramics International, 2019, 45(14):17054-17063. doi: 10.1016/j.ceramint.2019.05.257 |
[32] | Chen T, Yuan Y, Zhao Y, et al. Preparation of montmorillonite nanosheets through freezing/thawing and ultrasonic exfoliation[J]. Langmuir:the ACS journal of surfaces and colloids, 2019, 35(6):2368-2374. doi: 10.1021/acs.langmuir.8b04171 |
[33] | Stevens L, Williams K, Han W Y, et al. Preparation and CO2 adsorption of diamine modified montmorillonite via exfoliation grafting route[J]. Chemical Engineering Journal, 2013, 215-216:699-708. doi: 10.1016/j.cej.2012.11.058 |
[34] | Zhong Y, Wang S. Exfoliation and yield behavior in nanodispersions of organically modified montmorillonite clay[J]. Journal of Rheology, 2003, 47(2):483-495. doi: 10.1122/1.1545074 |
[35] | Wang W, Zhao Y, Yi H, et al. Pb(Ⅱ) removal from water using porous hydrogel of chitosan-2D montmorillonite[J]. International Journal of Biological Macromolecules, 2019, 128:85-93. doi: 10.1016/j.ijbiomac.2019.01.098 |
[36] | Wang W, Zhao Y, Yi H, et al. Preparation and characterization of self-assembly hydrogels with exfoliated montmorillonite nanosheets and chitosan[J]. Nanotechnology, 2018, 29(2):25605. doi: 10.1088/1361-6528/aa9ba4 |
[37] | Kang S, Zhao Y, Wang W, et al. Removal of methylene blue from water with montmorillonite nanosheets/chitosan hydrogels as adsorbent[J]. Applied Surface Science, 2018, 448:203-211. doi: 10.1016/j.apsusc.2018.04.037 |
[38] | Ruppert G, Bauer R, Heisler G. The photo-Fenton reaction - an effective photochemical wastewater treatment process[J]. Journal of Photochemistry and Photobiology A:Chemistry, 1993, 73(1):75-78. doi: 10.1016/1010-6030(93)80035-8 |
[39] | Comninellis C, Kapalka A, Malato S, et al. Advanced oxidation processes for water treatment advances and trends for R & D[J]. Journal of Chenmical Technology and Biotechnology, 2008, 6(83):769-776. |
[40] | Zhao Y, Kang S, Qin L, et al. Self-assembled gels of Fe-chitosan/montmorillonite nanosheets:Dye degradation by the synergistic effect of adsorption and photo-Fenton reaction[J]. Chemical Engineering Journal, 2020, 379:122322. doi: 10.1016/j.cej.2019.122322 |
[41] | Wang W, Zhao Y, Bai H, et al. Methylene blue removal from water using the hydrogel beads of poly(vinyl alcohol)-sodium alginate-chitosan-montmorillonite[J]. Carbohydr Polym, 2018, 198:518-528. doi: 10.1016/j.carbpol.2018.06.124 |
[42] | Chen T, Chen P, Zhao Y, et al. Synthesis of montmorillonite-chitosan hollow and hierarchical mesoporous spheres with single-template layer-by-layer assembly[J]. Journal of Materials Science & Technology, 2019, 35(10):2325-2330. |
[43] | Przepiórski J, Skrodzewicz M, Morawski A W. High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption[J]. Applied Surface Science, 2004, 225(1-4):235-242. doi: 10.1016/j.apsusc.2003.10.006 |
[44] | Hong Y, Xin-shi G. Preparation of polyethylene-paraffin compound as a form-stable solid-liquid phase change material[J]. Solar Energy Materials and Solar Cells, 2000, 64(1):37-44. doi: 10.1016/S0927-0248(00)00041-6 |
[45] | Alkan C, Sarı A, Karaipekli A, et al. Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2009, 93(1):143-147. doi: 10.1016/j.solmat.2008.09.009 |
[46] | Yi H, Zhan W, Zhao Y, et al. A novel core-shell structural montmorillonite nanosheets/stearic acid composite PCM for great promotion of thermal energy storage properties[J]. Solar Energy Materials and Solar Cells, 2019, 192:57-64. doi: 10.1016/j.solmat.2018.12.015 |
[47] | Yi H, Zhan W, Zhao Y, et al. Design of MtNS/SA microencapsulated phase change materials for enhancement of thermal energy storage performances:Effect of shell thickness[J]. Solar Energy Materials and Solar Cells, 2019, 200:109935. doi: 10.1016/j.solmat.2019.109935 |
[48] | Zhan W, Zhao Y, Yuan Y, et al. Development of 2D-Mt/SA/AgNPs microencapsulation phase change materials for solar energy storage with enhancement of thermal conductivity and latent heat capacity[J]. Solar Energy Materials and Solar Cells, 2019, 201:110090. doi: 10.1016/j.solmat.2019.110090 |
[49] | Kourtides D A, Parker J A. Assessment of relative flammability and thermochemical properties of some thermoplastic materials[J]. Polymer Engineering and Science, 1978, 18(11):855-860. doi: 10.1002/pen.760181105 |
[50] | Camino G, Grassie N, McNeill I C. Influence of the fire retardant, ammonium polyphosphate, on the thermal degradation of poly(methyl methacrylate)[J]. Journal of Polymer Science:Polymer Chemistry Edition, 1978, 16(1):95-106. doi: 10.1002/pol.1978.170160110 |
[51] | Peng C, Yunliang Z, Wei W, et al. Correlation of montmorillonite sheet thickness and flame retardant behavior of a chitosan-montmorillonite nanosheet nembrane assembled on flexible polyurethane foam[J]. Polymer, 2019, 213(11):1-13. |
[52] | Ding F, Liu J, Zeng S, et al. Biomimetic nanocoatings with exceptional mechanical, barrier, and flame-retardant properties from large-scale one-step coassembly[J]. Sci Adv, 2017, 3(7):e1701212. doi: 10.1126/sciadv.1701212 |
[53] | Koltonow A R, Huang J. Ionic transport. Two-dimensional nanofluidics[J]. Science, 2016, 351(6280):1395-1396. doi: 10.1126/science.aaf5289 |
[54] | Kim S J, Wang Y, Lee J H, et al. Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel[J]. Physical review letters, 2007, 99(4):44501. doi: 10.1103/PhysRevLett.99.044501 |
[55] | Kim S J, Li L D, Han J. Amplified electrokinetic response by concentration polarization near nanofluidic channel[J]. Langmuir:the ACS journal of surfaces and colloids, 2009, 25(13):7759-7765. doi: 10.1021/la900332v |
[56] | Cao Q, Zuo C, Li L, et al. Electroosmotic flow in a nanofluidic channel coated with neutral polymers[J]. Microfluidics and Nanofluidics, 2010, 9(6):1051-1062. doi: 10.1007/s10404-010-0620-5 |
[57] | Pal Singh K, Kumar M, Kumari K. Field-effect control of electrokinetic ion transport in a nanofluidic channel[J]. Journal of Applied Physics, 2011, 110(8):84301. doi: 10.1063/1.3651634 |
[58] | Lao J, Lv R, Gao J, et al. Aqueous stable Ti3C2 mxene membrane with fast and photoswitchable nanofluidic transport[J]. ACS Nano, 2018, 12(12):12464-12471. doi: 10.1021/acsnano.8b06708 |
[59] | Barton R A, Ilic B, Verbridge S S, et al. Fabrication of a nanomechanical mass sensor containing a nanofluidic channel[J]. Nano letters, 2010, 10(6):2058-2063. doi: 10.1021/nl100193g |
[60] | Cheng L, Cao D. Designing a thermo-switchable channel for nanofluidic controllable transportation[J]. ACS nano, 2011, 5(2):1102-1108. doi: 10.1021/nn102754g |
[61] | Meili L, Meng H, Lianyu T, et al. Two-dimensional nanochannel arrays based on flexible montmorillonite membranes[J]. Acs Appl Mater Inter, 2018(10):44915-44923. |
[62] | Zhou Y, Ding H, Smith A T, et al. Nanofluidic energy conversion and molecular separation through highly stable clay-based membranes[J]. Journal of Materials Chemistry A, 2019, 7(23):14089-14096. doi: 10.1039/C9TA00801B |
[63] | Roy D, Cambre J N, Sumerlin B S. Future perspectives and recent advances in stimuli-responsive materials[J]. Progress in Polymer Science, 2010, 35(1):278-301. |
[64] | Russell T P. Surface-responsive materials[J]. Science, 2002, 5583(297):964-967. |
[65] | Wilson H R, Cantow H, Eck W. Semi-interpenetrating polymer networks with temperature-dependent light transmission-a new smart material for solar technology[J]. Advanced Materials, 1995, 7(9):800-803. doi: 10.1002/adma.19950070909 |
[66] | Unger K, Salzmann P, Masciullo C, et al. Novel light-responsive biocompatible hydrogels produced by initiated chemical vapor deposition[J]. ACS applied materials & interfaces, 2017, 9(20):17408-17416. |
[67] | Yang F, Guo Z. A facile approach to transform stainless steel mesh into pH-responsive smart material[J]. RSC Advances, 2015, 5(18):13635-13642. doi: 10.1039/C4RA16607H |
[68] | Lavalle P, Voegel J, Vautier D, et al. Dynamic aspects of films prepared by a sequential deposition of species:perspectives for smart and responsive materials[J]. Advanced materials (Deerfield Beach, Fla.), 2011, 23(10):1191-1221. doi: 10.1002/adma.201003309 |
[69] | Peng J, Cheng Y, Tomsia A P, et al. Thermochromic Artificial Nacre Based on Montmorillonite[J]. ACS applied materials & interfaces, 2017, 9(29):24993-24998. |
[70] | Gogoi R K, Raidongia K. Strategic shuffling of clay layers to imbue them with responsiveness[J]. Advanced Materials, 2017, 29(24):1701164. doi: 10.1002/adma.201701164 |
(a) Schematic diagram of montmorillonite layered crystal structure; (b) Top view of montmorillonite crystal layer Si-O tetrahedron and Al-O octahedron
Influence of cation types of montmorillonite on the preparation of two-dimensional montmorillonite nanosheets by ultrasonic stripping [31]
(a) Schematic of cyclic exfoliation of montmorillonite by ultrasonic-freeze thawing method; (b) XRD patterns of montmorillonite after exfoliation without exfoliation and cyclic exfoliation by ultrasonic-freezing / thawing method[32]
(a) Mechanism of self-assembly of montmorillonite two-dimensional nanosheets and chitosan to prepare hydrogel; (b, c) Three-dimensional network structure of hydrogel[36]
(a) Adsorption and decomposition of MB by self-assembly Fe-CS-MMTNS gel, pH=3; (b)Recyclability of self-assembly Fe-CS-MMTNS gel; (c) Schematic diagram of MB decomposed by synergistic effect of adsorption and photo-Fenton reaction by self-assembly Fe-CS-MMTNS gel[40]
(a) PVA/SA/CTS-MMTNS gel sphere; (b) PVA/SA/CTS-MMTNS gel sphere after freeze drying; (c) & (d) SEM morphology of the porous structure inside the gel sphere[41]; (e) Preparation of CS-MMTNS hollow layered spherical shell; (f) SEM morphology of CS-MMTNS hollow layered spherical shell; (g) TEM morphology of CS-MMTNS hollow spherical shell[42]
(a) Preparation and structure of two-dimensional montmorillonite-stearic acid phase change energy storage material; (b) DSC curves of MtNs-300/SA PCM; (c) DSC curve of the material first changed after the introduction of AgNPs; (d) Schematic diagram of AgNPs distribution locations and corresponding heat transfer paths[46-48]
(a) Surface of FPU combustion process; (b) Surface of FPU combustion process after loading montmorillonite; (c) Loaded montmorillonite FPU surface after combustion; (d) Loaded montmorillonite FPU cross-section after combustion; (e) SEM morphology of FPU; (f) SEM morphology of FPU after loading montmorillonite nanosheets; (g) Schematic diagram of flame retardant mechanism of montmorillonite layers with different thickness[51]
(a) Schematic diagram of the preparation process of layered ordered montmorillonite nanocomposites; (b) SEM morphology of cross section of PVA / MMT film before combustion experiment; (c) SEM morphology of cross section of PVA / MMT film after combustion experiment; (d) Front view of PU after combustion; (e) Top view of PU after combustion; (f) Front view of PU with PVA / MMT after combustion; (g) Top view of PU with PVA / MMT after combustion[52]
(a) TEM images of exfoliated MMT nanosheets; (b) Flexible film (RMM) with two-dimensional channel prepared by CTAB modified montmorillonite nanosheets; (c) SEM morphology of RMM cross-section layered structure; (d) Ⅰ-Ⅴ curve of different concentrations of KCl solution in RMM ion transmission characteristic test; (e) Relationship between electrolyte concentration and proton conduction efficiency in RMM ion transmission characteristic test; (f) Ⅰ-Ⅴ curve of diffusion current generated by each concentration gradient in different pH conditions in RMM energy conversion test; (g) Ⅰ-Ⅴ curve at different concentration gradients (1, 10, 100) in RMM energy conversion test[62]
(a) Thermochromic properties of MMT-poly PCDA-APTES nacre-like membrane, (b)Schematic diagram of thermochromic mechanism[69]; (c) Digital image of MMT-VMT clay-clay bilayer membrane (CCBM); (d) Deformation of CCBM under different humidity; (e) Deformation of CCBM under different environment temperature; (f) Schematic diagram of the bending mechanism of the double-layer heterostructure caused by the difference in component deformation[70]