Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2019 Vol. 39, No. 6
Article Contents

BAI Haoyu, ZHAO Yunliang, WANG Wei, ZHANG Tingting, SONG Shaoxian. Exfoliating Preparation of Two-dimensional Montmorillonite Nanosheet and the Functional Applications[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 101-111. doi: 10.13779/j.cnki.issn1001-0076.2019.06.015
Citation: BAI Haoyu, ZHAO Yunliang, WANG Wei, ZHANG Tingting, SONG Shaoxian. Exfoliating Preparation of Two-dimensional Montmorillonite Nanosheet and the Functional Applications[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 101-111. doi: 10.13779/j.cnki.issn1001-0076.2019.06.015

Exfoliating Preparation of Two-dimensional Montmorillonite Nanosheet and the Functional Applications

More Information
  • As a typical type of layered clay mineral, montmorillonite with excellent physicochemical properties can be separated into high-diameter-thickness lamellar monomers with two-dimensional structural characteristics. Common exfoliation methods can be divided into chemical method, mechanical method and chemical-mechanical method. Through the exfoliation process, the montmorillonite flakes with weak interlayer bonding can be separated and uniformly dispersed. The exfoliated nanosheets can be used for the preparation of advanced functional mineral materials such as environmental function materials, energy storage materials, flame retardant materials, nanofluidic channels and smart materials. In this paper, recent advances in the exfoliating preparation and functional applications of two-dimensional montmorillonite nanosheets are reviewed, thereby providing enlightening ideas for the further application and deepening study of layered clay minerals.

  • 加载中
  • [1] SKIPPER N T, SPOSITO G, SOPER A K. Surface geochemistry of the clay minerals[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7):3358-3364. doi: 10.1073/pnas.96.7.3358

    CrossRef Google Scholar

    [2] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials[J]. Nature, 2006, 442(7100):282-286. doi: 10.1038/nature04969

    CrossRef Google Scholar

    [3] Geim A K. Graphene:status and prospects[J]. Science, 2009, 5934(324):1530-1534.

    Google Scholar

    [4] Mas-Ballesté R G C G J. 2D materials:to graphene and beyond[J]. Nanoscale, 2011, 1(3):20-30.

    Google Scholar

    [5] Bhimanapati G R, Lin Z, Meunier V, et al. Recent Advances in two-dimensional materials beyond graphene[J]. ACS Nano, 2015, 9(12):11509-11539. doi: 10.1021/acsnano.5b05556

    CrossRef Google Scholar

    [6] Ling X, Lin Y, Ma Q, et al. Parallel stitching of 2D materials[J]. Advanced materials, 2016, 28(12):2322-2329. doi: 10.1002/adma.201505070

    CrossRef Google Scholar

    [7] Bonaccorso F, Colombo L, Yu G, et al. 2D materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science, 2015, 347(6217):1246501. doi: 10.1126/science.1246501

    CrossRef Google Scholar

    [8] Zhu T T, Zhou C H, Kabwe F B, et al. Exfoliation of montmorillonite and related properties of clay/polymer nanocomposites[J]. Applied Clay Science, 2019, 169:48-66. doi: 10.1016/j.clay.2018.12.006

    CrossRef Google Scholar

    [9] Liu Z, Teng Y, Teng F, et al. Charge storage performances of micro-supercapacitor predominated by two-dimensional (2D) crystal structure[J]. Nano Energy, 2016, 27:58-67. doi: 10.1016/j.nanoen.2016.06.025

    CrossRef Google Scholar

    [10] Zhang L, Yao H, Li Z, et al. Synthesis of delaminated layered double hydroxides and their assembly with graphene oxide for supercapacitor application[J]. Journal of Alloys and Compounds, 2017, 711:31-41. doi: 10.1016/j.jallcom.2017.03.348

    CrossRef Google Scholar

    [11] Szendrei-Temesi K S O B. Lithium tin sulfide-a high-refractive-index 2D material for humidity-responsive photonic crystals[J]. Advanced functional materials, 2018, 14(28):1705740.

    Google Scholar

    [12] Chauhan N, Chawla S, Pundir C S, et al. An electrochemical sensor for detection of neurotransmitter-acetylcholine using metal nanoparticles, 2D material and conducting polymer modified electrode[J]. Biosens Bioelectron, 2017, 89(Pt 1):377-383.

    Google Scholar

    [13] Brigattia M F, Galanb E, Thengc B K G. Charpter 2 structure and mineralogy of clay minerals[J]. Development of clay science, 2006(1):19-86.

    Google Scholar

    [14] Thomas A W L H. Adsorption studies on clay minerals Ⅸ. ion-exchange properties of natural and thermally altered montmorillonite[J]. Soil Science Society of America Journal, 1965, 3(29):627-651.

    Google Scholar

    [15] 黄缓缓.金属阳离子对蒙脱石水化膨胀影响的试验研究[J].选煤技术, 2018(4):19-22.

    Google Scholar

    [16] Zhou Y, LaChance A M, Smith A T, et al. Strategic design of clay-based multifunctional materials:from natural minerals to nanostructured membranes[J]. Advanced functional materials, 2019, 29(16):1807611. doi: 10.1002/adfm.201807611

    CrossRef Google Scholar

    [17] Nicolosi V, Chhowalla M, Kanatzidis M G. Liquid exfoliation of layered materials[J]. Science, 2013, 6139(340):1226419.

    Google Scholar

    [18] Coleman J N, Lotya M, O'Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017):568-571. doi: 10.1126/science.1194975

    CrossRef Google Scholar

    [19] Park K H, Kim B H, Song S H, et al. Exfoliation of non-oxidized graphene flakes for scalable conductive film[J]. Nano letters, 2012, 12(6):2871-2876. doi: 10.1021/nl3004732

    CrossRef Google Scholar

    [20] Gintert M J, Jana S C, Miller S G. A novel strategy for nanoclay exfoliation in thermoset polyimide nanocomposite systems[J]. Polymer, 2007, 48(14):4166-4173. doi: 10.1016/j.polymer.2007.05.053

    CrossRef Google Scholar

    [21] Ang P K, Wang S, Bao Q, et al. High-throughput synthesis of graphene by intercalation-exfoliation of graphite oxide and study of ionic screening in graphene transistor[J]. ACS nano, 2009, 3(11):3587-3594. doi: 10.1021/nn901111s

    CrossRef Google Scholar

    [22] Cano-Márquez A G, Rodríguez-Macías F J, Campos-Delgado J, et al. Ex-MWNTs:graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes[J]. Nano letters, 2009, 9(4):1527-1533. doi: 10.1021/nl803585s

    CrossRef Google Scholar

    [23] Thasirisap E, Vittayakorn N, Seeharaj P. Surface modification of TiO2 particles with the sono-assisted exfoliation method[J]. Ultrasonics Sonochemistry, 2017, 39:733-740. doi: 10.1016/j.ultsonch.2017.06.002

    CrossRef Google Scholar

    [24] Sanchez-Solis A, Garcia-Rejon A, Estrada M, et al. Properties of poly(ethylene terephthalate)-poly(ethylene naphthalene 2, 6-dicarboxylate) blends with montmorillonite clay[J]. Polymer international, 2005, 12(54):1669-1672.

    Google Scholar

    [25] 郑翔, 孙海标, 张炫辉, 等.蒙脱石剥离方法的对比与选择[J].矿物学报, 2014, 34(3):427-432.

    Google Scholar

    [26] Jiankun L, Yucai K, Zongneng Q, et al. Study on intercalation and exfoliation behavior of organoclays in epoxy resin[J]. Journal of Polymer Science Part B:Polymer Physics, 2000, 1(39):115-120.

    Google Scholar

    [27] 吴选军, 袁继祖, 余永富.双官能团有机改性蒙脱石的制备及性能[J].非金属矿, 2009, 32(4):1-4. doi: 10.3969/j.issn.1000-8098.2009.04.001

    CrossRef Google Scholar

    [28] Huang T, Chiou J, Wang Y, et al. Unusual exfoliation of layered silicate clays by non-aqueous amine diffusion mechanism[J]. Journal of Polymer Research, 2016, 23(8):1-7.

    Google Scholar

    [29] 李存军, 卢红, 林茵茵, 等.蒙脱石的湿法机械球磨剥离[J].硅酸盐通报, 2016, 35(5):1372-1377.

    Google Scholar

    [30] Bai H, Zhao Y, Zhang X, et al. Correlation of exfoliation performance with interlayer cations of montmorillonite in the preparation of two-dimensional nanosheets[J]. Journal of the American Ceramic Society, 2019, 102(7):3908-3922. doi: 10.1111/jace.16285

    CrossRef Google Scholar

    [31] Bai H, Zhao Y, Wang W, et al. Effect of interlayer cations on exfoliating 2D montmorillonite nanosheets with high aspect ratio:From experiment to molecular calculation[J]. Ceramics International, 2019, 45(14):17054-17063. doi: 10.1016/j.ceramint.2019.05.257

    CrossRef Google Scholar

    [32] Chen T, Yuan Y, Zhao Y, et al. Preparation of montmorillonite nanosheets through freezing/thawing and ultrasonic exfoliation[J]. Langmuir:the ACS journal of surfaces and colloids, 2019, 35(6):2368-2374. doi: 10.1021/acs.langmuir.8b04171

    CrossRef Google Scholar

    [33] Stevens L, Williams K, Han W Y, et al. Preparation and CO2 adsorption of diamine modified montmorillonite via exfoliation grafting route[J]. Chemical Engineering Journal, 2013, 215-216:699-708. doi: 10.1016/j.cej.2012.11.058

    CrossRef Google Scholar

    [34] Zhong Y, Wang S. Exfoliation and yield behavior in nanodispersions of organically modified montmorillonite clay[J]. Journal of Rheology, 2003, 47(2):483-495. doi: 10.1122/1.1545074

    CrossRef Google Scholar

    [35] Wang W, Zhao Y, Yi H, et al. Pb(Ⅱ) removal from water using porous hydrogel of chitosan-2D montmorillonite[J]. International Journal of Biological Macromolecules, 2019, 128:85-93. doi: 10.1016/j.ijbiomac.2019.01.098

    CrossRef Google Scholar

    [36] Wang W, Zhao Y, Yi H, et al. Preparation and characterization of self-assembly hydrogels with exfoliated montmorillonite nanosheets and chitosan[J]. Nanotechnology, 2018, 29(2):25605. doi: 10.1088/1361-6528/aa9ba4

    CrossRef Google Scholar

    [37] Kang S, Zhao Y, Wang W, et al. Removal of methylene blue from water with montmorillonite nanosheets/chitosan hydrogels as adsorbent[J]. Applied Surface Science, 2018, 448:203-211. doi: 10.1016/j.apsusc.2018.04.037

    CrossRef Google Scholar

    [38] Ruppert G, Bauer R, Heisler G. The photo-Fenton reaction - an effective photochemical wastewater treatment process[J]. Journal of Photochemistry and Photobiology A:Chemistry, 1993, 73(1):75-78. doi: 10.1016/1010-6030(93)80035-8

    CrossRef Google Scholar

    [39] Comninellis C, Kapalka A, Malato S, et al. Advanced oxidation processes for water treatment advances and trends for R & D[J]. Journal of Chenmical Technology and Biotechnology, 2008, 6(83):769-776.

    Google Scholar

    [40] Zhao Y, Kang S, Qin L, et al. Self-assembled gels of Fe-chitosan/montmorillonite nanosheets:Dye degradation by the synergistic effect of adsorption and photo-Fenton reaction[J]. Chemical Engineering Journal, 2020, 379:122322. doi: 10.1016/j.cej.2019.122322

    CrossRef Google Scholar

    [41] Wang W, Zhao Y, Bai H, et al. Methylene blue removal from water using the hydrogel beads of poly(vinyl alcohol)-sodium alginate-chitosan-montmorillonite[J]. Carbohydr Polym, 2018, 198:518-528. doi: 10.1016/j.carbpol.2018.06.124

    CrossRef Google Scholar

    [42] Chen T, Chen P, Zhao Y, et al. Synthesis of montmorillonite-chitosan hollow and hierarchical mesoporous spheres with single-template layer-by-layer assembly[J]. Journal of Materials Science & Technology, 2019, 35(10):2325-2330.

    Google Scholar

    [43] Przepiórski J, Skrodzewicz M, Morawski A W. High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption[J]. Applied Surface Science, 2004, 225(1-4):235-242. doi: 10.1016/j.apsusc.2003.10.006

    CrossRef Google Scholar

    [44] Hong Y, Xin-shi G. Preparation of polyethylene-paraffin compound as a form-stable solid-liquid phase change material[J]. Solar Energy Materials and Solar Cells, 2000, 64(1):37-44. doi: 10.1016/S0927-0248(00)00041-6

    CrossRef Google Scholar

    [45] Alkan C, Sarı A, Karaipekli A, et al. Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2009, 93(1):143-147. doi: 10.1016/j.solmat.2008.09.009

    CrossRef Google Scholar

    [46] Yi H, Zhan W, Zhao Y, et al. A novel core-shell structural montmorillonite nanosheets/stearic acid composite PCM for great promotion of thermal energy storage properties[J]. Solar Energy Materials and Solar Cells, 2019, 192:57-64. doi: 10.1016/j.solmat.2018.12.015

    CrossRef Google Scholar

    [47] Yi H, Zhan W, Zhao Y, et al. Design of MtNS/SA microencapsulated phase change materials for enhancement of thermal energy storage performances:Effect of shell thickness[J]. Solar Energy Materials and Solar Cells, 2019, 200:109935. doi: 10.1016/j.solmat.2019.109935

    CrossRef Google Scholar

    [48] Zhan W, Zhao Y, Yuan Y, et al. Development of 2D-Mt/SA/AgNPs microencapsulation phase change materials for solar energy storage with enhancement of thermal conductivity and latent heat capacity[J]. Solar Energy Materials and Solar Cells, 2019, 201:110090. doi: 10.1016/j.solmat.2019.110090

    CrossRef Google Scholar

    [49] Kourtides D A, Parker J A. Assessment of relative flammability and thermochemical properties of some thermoplastic materials[J]. Polymer Engineering and Science, 1978, 18(11):855-860. doi: 10.1002/pen.760181105

    CrossRef Google Scholar

    [50] Camino G, Grassie N, McNeill I C. Influence of the fire retardant, ammonium polyphosphate, on the thermal degradation of poly(methyl methacrylate)[J]. Journal of Polymer Science:Polymer Chemistry Edition, 1978, 16(1):95-106. doi: 10.1002/pol.1978.170160110

    CrossRef Google Scholar

    [51] Peng C, Yunliang Z, Wei W, et al. Correlation of montmorillonite sheet thickness and flame retardant behavior of a chitosan-montmorillonite nanosheet nembrane assembled on flexible polyurethane foam[J]. Polymer, 2019, 213(11):1-13.

    Google Scholar

    [52] Ding F, Liu J, Zeng S, et al. Biomimetic nanocoatings with exceptional mechanical, barrier, and flame-retardant properties from large-scale one-step coassembly[J]. Sci Adv, 2017, 3(7):e1701212. doi: 10.1126/sciadv.1701212

    CrossRef Google Scholar

    [53] Koltonow A R, Huang J. Ionic transport. Two-dimensional nanofluidics[J]. Science, 2016, 351(6280):1395-1396. doi: 10.1126/science.aaf5289

    CrossRef Google Scholar

    [54] Kim S J, Wang Y, Lee J H, et al. Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel[J]. Physical review letters, 2007, 99(4):44501. doi: 10.1103/PhysRevLett.99.044501

    CrossRef Google Scholar

    [55] Kim S J, Li L D, Han J. Amplified electrokinetic response by concentration polarization near nanofluidic channel[J]. Langmuir:the ACS journal of surfaces and colloids, 2009, 25(13):7759-7765. doi: 10.1021/la900332v

    CrossRef Google Scholar

    [56] Cao Q, Zuo C, Li L, et al. Electroosmotic flow in a nanofluidic channel coated with neutral polymers[J]. Microfluidics and Nanofluidics, 2010, 9(6):1051-1062. doi: 10.1007/s10404-010-0620-5

    CrossRef Google Scholar

    [57] Pal Singh K, Kumar M, Kumari K. Field-effect control of electrokinetic ion transport in a nanofluidic channel[J]. Journal of Applied Physics, 2011, 110(8):84301. doi: 10.1063/1.3651634

    CrossRef Google Scholar

    [58] Lao J, Lv R, Gao J, et al. Aqueous stable Ti3C2 mxene membrane with fast and photoswitchable nanofluidic transport[J]. ACS Nano, 2018, 12(12):12464-12471. doi: 10.1021/acsnano.8b06708

    CrossRef Google Scholar

    [59] Barton R A, Ilic B, Verbridge S S, et al. Fabrication of a nanomechanical mass sensor containing a nanofluidic channel[J]. Nano letters, 2010, 10(6):2058-2063. doi: 10.1021/nl100193g

    CrossRef Google Scholar

    [60] Cheng L, Cao D. Designing a thermo-switchable channel for nanofluidic controllable transportation[J]. ACS nano, 2011, 5(2):1102-1108. doi: 10.1021/nn102754g

    CrossRef Google Scholar

    [61] Meili L, Meng H, Lianyu T, et al. Two-dimensional nanochannel arrays based on flexible montmorillonite membranes[J]. Acs Appl Mater Inter, 2018(10):44915-44923.

    Google Scholar

    [62] Zhou Y, Ding H, Smith A T, et al. Nanofluidic energy conversion and molecular separation through highly stable clay-based membranes[J]. Journal of Materials Chemistry A, 2019, 7(23):14089-14096. doi: 10.1039/C9TA00801B

    CrossRef Google Scholar

    [63] Roy D, Cambre J N, Sumerlin B S. Future perspectives and recent advances in stimuli-responsive materials[J]. Progress in Polymer Science, 2010, 35(1):278-301.

    Google Scholar

    [64] Russell T P. Surface-responsive materials[J]. Science, 2002, 5583(297):964-967.

    Google Scholar

    [65] Wilson H R, Cantow H, Eck W. Semi-interpenetrating polymer networks with temperature-dependent light transmission-a new smart material for solar technology[J]. Advanced Materials, 1995, 7(9):800-803. doi: 10.1002/adma.19950070909

    CrossRef Google Scholar

    [66] Unger K, Salzmann P, Masciullo C, et al. Novel light-responsive biocompatible hydrogels produced by initiated chemical vapor deposition[J]. ACS applied materials & interfaces, 2017, 9(20):17408-17416.

    Google Scholar

    [67] Yang F, Guo Z. A facile approach to transform stainless steel mesh into pH-responsive smart material[J]. RSC Advances, 2015, 5(18):13635-13642. doi: 10.1039/C4RA16607H

    CrossRef Google Scholar

    [68] Lavalle P, Voegel J, Vautier D, et al. Dynamic aspects of films prepared by a sequential deposition of species:perspectives for smart and responsive materials[J]. Advanced materials (Deerfield Beach, Fla.), 2011, 23(10):1191-1221. doi: 10.1002/adma.201003309

    CrossRef Google Scholar

    [69] Peng J, Cheng Y, Tomsia A P, et al. Thermochromic Artificial Nacre Based on Montmorillonite[J]. ACS applied materials & interfaces, 2017, 9(29):24993-24998.

    Google Scholar

    [70] Gogoi R K, Raidongia K. Strategic shuffling of clay layers to imbue them with responsiveness[J]. Advanced Materials, 2017, 29(24):1701164. doi: 10.1002/adma.201701164

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Article Metrics

Article views(2809) PDF downloads(572) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint