Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2019 Vol. 39, No. 1
Article Contents

SUN Haoran, YIN Wanzhong, TANG Yuan, FU Yafeng, LIU Jia. Flotation Kinetics of Magnesite and Its Associated Minerals Dolomite[J]. Conservation and Utilization of Mineral Resources, 2019, 39(1): 10-16. doi: 10.13779/j.cnki.issn1001-0076.2019.01.003
Citation: SUN Haoran, YIN Wanzhong, TANG Yuan, FU Yafeng, LIU Jia. Flotation Kinetics of Magnesite and Its Associated Minerals Dolomite[J]. Conservation and Utilization of Mineral Resources, 2019, 39(1): 10-16. doi: 10.13779/j.cnki.issn1001-0076.2019.01.003

Flotation Kinetics of Magnesite and Its Associated Minerals Dolomite

More Information
  • Corresponding author: YIN Wanzhong  
  • In order to study the effects of different concentrations of modifiers (sodium carbonate, calcium chloride and magnesium chloride) on flotation recovery and flotation rate of magnesite and dolomite single minerals the batch bleb flotation test was summarized. For -74+38 μm particles of magnesite and dolomite, set the pulp pH value to 12, the concentration of sodium oleate to 0.25 mmol/L during the flotation test, and the optimum separation process flotation is obtained. The results show that the difference of floatation characteristics between magnesite and dolomite is significant when magnesium chloride (2.0 mmol/L) as a regulator. The flotation separation of two groups is realized by two coarse selection, 1 time for coarse selection is 1.0 min, and 2 time for coarse selection is 4.0 min. The flotation process of magnesite and dolomite can be well simulated by the simulation analysis of the single mineral flotation process of magnesium chloride (2.0 mmol/L) as a regulator.

  • 加载中
  • [1] 印万忠, 唐远, 姚金, 等.矿物浮选过程中的交互影响[J].矿产保护与利用, 2018(3):55-60.

    Google Scholar

    [2] 刘文刚, 姚广铮, 卢位, 等.十二胺体系中金属离子对菱镁矿和白云石浮选行为的影响[J].矿产保护与利用, 2018(3):67-70, 76.

    Google Scholar

    [3] Anastassakis G N. A study on the separation of magnesite fines by magnetic carrier methods[J]. Colloids and surfaces A:physicochemical and engineering aspects, 1999, 149(1/2/3):585-593.

    Google Scholar

    [4] Botero A E C, Torem M L, Mesquita LMS, et al. Surface chemistry fundamentals of biosorption of rhodococcus opacus and its effect in calcite and magnesite flotation[J]. Minerals engineering, 2008, 21(1):83-92.

    Google Scholar

    [5] Asghar Azizi, Ahmad Hassanzadeh, Behnam Fadaei, et al. Investigating the first-order flotation kinetics models for sarcheshmeh copper sulfide ore[J]. International journal of mining science and technology, 2015, 25(5):849-854. doi: 10.1016/j.ijmst.2015.07.022

    CrossRef Google Scholar

    [6] Cilek E C. Estimation of flotation kinetic parameters by consider-ing interactions of the operating variables[J]. Minerals engineering, 2004, 17(1):81-85.

    Google Scholar

    [7] 陈子鸣, 吴多才.浮选动力学研究之一——矿物浮选速率模型[J].有色金属(冶炼部分), 1978(10):27-34.

    Google Scholar

    [8] 陈子鸣.浮选动力学研究之二——浮选速率常数分布密度函数的复原[J].有色金属(冶炼部分), 1978(11):29-35.

    Google Scholar

    [9] Paula Moraga, Jorge Cano, Rebecca F. Baggaley, et al. Modelling the distribution and transmission intensity of lymphatic filariasis in sub-saharan Africa prior to scaling up interventions:integrated use of geostatistical and mathematical modelling[J]. Parasites & vectors, 2015, 8(1):149-160.

    Google Scholar

    [10] Tiago Priolli Monteiro, Antonio Carlos Canale. Development of a direct-dynamic model for a passenger vehicle on MATLAB simulink[J]. Journal of the Brazilian society of mechanical sciences and engineering, 2017, 39(2):385-400. doi: 10.1007/s40430-015-0470-x

    CrossRef Google Scholar

    [11] Yeimy Morales, Gabriel Bosque, Josep Vehí, et al. PFA toolbox:a MATLAB tool for metabolic flux analysis[J]. BMC systems biology, 2016, 10(1):1145-1164.

    Google Scholar

    [12] Sripriya R, Rao P V T, Choudhury B R, et al. Optimization of operating variables of fine coal flotation using a combination of modified flotation parameters and statistical techniques[J]. International journal of mineral processing, 2003, 64(1/2/3/4):109-127.

    Google Scholar

    [13] 李俊旺, 孙传尧.基于EXCEL和MATLAB求解浮选动力学模型的研究[J].矿冶, 2011, 20(4):1-2.

    Google Scholar

    [14] Xiaodong Zhang, Huiping Lu, Bo Li, et al. Structure design and optimization of deep cavity rollers of rotary steering spindle system[J]. Journal of failure analysis and prevention, 2016, 16(5):783-789. doi: 10.1007/s11668-016-0149-3

    CrossRef Google Scholar

    [15] Mehdi Rahimi, Fahimeh Dehghani, Bahram Rezai, et al. Influence of the roughness and shape of quartz particles on their flotation kinetics[J]. International journal of minerals metallurgy and materials.2012, 13(4):783-789.

    Google Scholar

    [16] 尹蒂, 李松仁.选矿数学模型[M].长沙:中南工业大学出版社, 1993.

    Google Scholar

    [17] 李俊旺.会泽铅锌硫化矿浮选过程分流分速的动力学研究[D].沈阳: 东北大学, 2012: 86-90.http://cdmd.cnki.com.cn/Article/CDMD-10145-1015565495.htm

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(4)

Article Metrics

Article views(1465) PDF downloads(11) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint