Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2018 Vol. 38, No. 6
Article Contents

SU Mingru, DOU Aichun, LIU Shuai, LIU Tong, GAO Tian, PAN Jin, LIU Yunjian. Thermodynamic Equilibrium Analysis on Mg2+-CO32--Ida2--H2O System[J]. Conservation and Utilization of Mineral Resources, 2018, (6): 24-30. doi: 10.13779/j.cnki.issn1001-0076.2018.06.005
Citation: SU Mingru, DOU Aichun, LIU Shuai, LIU Tong, GAO Tian, PAN Jin, LIU Yunjian. Thermodynamic Equilibrium Analysis on Mg2+-CO32--Ida2--H2O System[J]. Conservation and Utilization of Mineral Resources, 2018, (6): 24-30. doi: 10.13779/j.cnki.issn1001-0076.2018.06.005

Thermodynamic Equilibrium Analysis on Mg2+-CO32--Ida2--H2O System

More Information
  • Thermodynamic behaviors of magnesium carbonate (MgCO3) in iminodiacetate system were studied, and thermodynamic equilibrium equation was established. The theories of coordination chemistry was used to analysis the effect of the total concentration of Ida2- and pH value on the total concentration of Mg2+ and the concentration of free Mg2+, Ida2- and CO32-. Species distribution of Mg2+ and Ida2- was also discussed. The results show that the dissolution of MgCO3 under acidic condition is acid dissolution, while the dissolution of MgCO3 under alkaline condition is coordination reaction between Mg2+ and Ida2-. However, the dissolution quantity of MgCO3 is very low in alkaline system because the coordination ability of Mg2+ with Ida2- is very weak.

  • 加载中
  • [1] 张训鹏.冶金工程概论[M].长沙:中南大学出版社, 2009:3.

    Google Scholar

    [2] 窦爱春, 刘坷, 杨天足, 等.Ca2+-CO32--Ida2--H2O体系热力学分析[J].湿法冶金, 2017, 36(6):515-520.

    Google Scholar

    [3] 王鹏程, 陈志勇, 曹志明, 等.氧化铜矿石的选矿技术现状与展望[J].金属矿山, 2016(5):106-112. doi: 10.3969/j.issn.1001-1250.2016.05.023

    CrossRef Google Scholar

    [4] 王涵, 文书明, 李尧, 等.氧化铅矿浮选研究现状[J].矿产保护和利用, 2018(1):133-139.

    Google Scholar

    [5] Turan M D, Boyrazlı M, Altundoğan H S. Improving of copper extraction from chalcopyrite by using NaCl[J]. Journal of central south university, 2018, 25:21-28.

    Google Scholar

    [6] 马琳亭, 张恩玉.低品位氧化铜矿浸铜试验研究[J].甘肃冶金, 2015, 37(6):33-35. doi: 10.3969/j.issn.1672-4461.2015.06.011

    CrossRef Google Scholar

    [7] 吴爱详, 胡凯明, 王贻明, 等.含碳酸盐脉石氧化铜矿的酸浸动力学[J].工程科学报, 2016, 38(6):760-766.

    Google Scholar

    [8] 郭小东, 魏昶, 李兴彬, 等.次氧化锌酸性浸出液中萃取分离铟的工艺[J].中国有色金属学报, 2017, 27(12):2590-2597.

    Google Scholar

    [9] XIAN P F, ZHOU S F, WANG M Y, et al. Extraction of molybdenum and nickel from roasted Ni-Mo ore by hydrochloric acid leaching, sulphation roasting and water leaching[J]. Journal of central south university, 2017, 27:220-226.

    Google Scholar

    [10] 田国才, 胡均贤, 字富庭.氧化剂在黄铜矿氧化浸出中应用的研究进展[J].过程工程学报, 2017, 17(4):664-676.

    Google Scholar

    [11] 胡佛明.稀土矿泥中稀土的酸浸及其浸出动力学研究[D].昆明: 昆明理工大学, 2017.

    Google Scholar

    [12] 胡凯建.复杂氧化铜矿碱性浸矿菌种的选育及浸出规律研究[D].北京: 北京科技大学, 2017.http://cdmd.cnki.com.cn/Article/CDMD-10008-1017132159.htm

    Google Scholar

    [13] 赵峰, 杨玮娇, 杨卜.铅锡锑冶炼浮渣碱性浸出-结晶法制备锡酸钠[J].有色金属工程, 2017, 7(4):46-48. doi: 10.3969/j.issn.2095-1744.2017.04.010

    CrossRef Google Scholar

    [14] 张旭, 刘志宏, 李玉虎, 等.苛性碱溶液氧压浸出高砷锑烟尘[J].中南大学学报, 2014, 45(5):1390-1396.

    Google Scholar

    [15] 郑飞龙, 张承龙, 王景伟, 等.碱性氧化浸出废弃手机线路板中的锡、铅[J].金属矿山, 2017, (488):167-170.

    Google Scholar

    [16] MU W N, LU X Y, CUI F H, et al. Transformation and leaching kinetics of silicon from low-grade nickel laterite ore by pre-roasting and alkaline leaching process[J]. Journal of central south university, 2018, 28:169-176.

    Google Scholar

    [17] 刘志雄.氨性溶液中含铜矿物浸出动力学及氧化铜-锌矿浸出工艺研究[D].长沙: 中南大学, 2012.http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2197996

    Google Scholar

    [18] 林文军.氨浸法综合回收挥发窑氧化锌的试验研究[J].湖南有色金属, 2018, 34(1):29-32. doi: 10.3969/j.issn.1003-5540.2018.01.008

    CrossRef Google Scholar

    [19] 窦爱春.碱性亚氨基二乙酸盐体系处理低品位氧化锌矿的基础理论及工艺研究[D].长沙: 中南大学, 2012.http://cdmd.cnki.com.cn/Article/CDMD-10533-1012475306.htm

    Google Scholar

    [20] 窦爱春, 王硕, 扬天足, 等.Ca2+-CO32--Glu2--H2O体系热力学分析[J].有色金属(冶炼部分), 2017(6):1-6. doi: 10.3969/j.issn.1007-7545.2017.06.001

    CrossRef Google Scholar

    [21] 杨天足, 刘珍珍, 任晋, 等.Cu(Ⅱ)-Glu2--CO32--H2O体系热力学平衡分析[J].过程工程学报, 2009, 9(4):745-749. doi: 10.3321/j.issn:1009-606X.2009.04.019

    CrossRef Google Scholar

    [22] 杨天足, 任晋, 刘伟锋, 等.Zn(Ⅱ)-Glu2--CO32--H2O体系热力学平衡分析[J].中国有色金属学报, 2009, 19(6):1155-1161. doi: 10.3321/j.issn:1004-0609.2009.06.029

    CrossRef Google Scholar

    [23] 任晋.碱性谷氨酸钠体系处理低品位氧化锌矿的基础理论和工艺[D].长沙: 中南大学, 2010.http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1719089

    Google Scholar

    [24] 郑典慧, 陈定奔, 黄凌.Cu(Ⅱ)与亚氨基二乙酸配合物的合成、晶体结构[J].科学技术与工程, 2007, 7(12):2940-2942. doi: 10.3969/j.issn.1671-1815.2007.12.049

    CrossRef Google Scholar

    [25] 熊云, 姚胜来, 梅伏生, 等.配合物二(N-质子化亚氨基)二乙酸锰(Ⅱ)的晶体结构[J].华中师范大学学报(自然科学版), 2000, 34(4):418-420. doi: 10.3321/j.issn:1000-1190.2000.04.010

    CrossRef Google Scholar

    [26] DEAN J A. Lange's Handbook of Chemistry:15th Ed[M]. WEI Junfa. Beijing:Science press, 2003.

    Google Scholar

    [27] Martell A E, Smith R M. Critical stability constants critical stability constants (volume 1:Amino Acids)[M]. New York and London:Plenum press, 1974:1.

    Google Scholar

    [28] Martell A E, Smith R M. Critical stability constants (volume 4:Inorganic Ligands)[M]. New York and London:Plenum press, 1974:1, 37-38.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(1654) PDF downloads(3) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint