Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2018 Vol. 38, No. 5
Article Contents

YAN Chunjie, LIU Yi, LI Zhen, WANG Hongquan, ZHU Xiaoyan, DUAN Ping. Current Research of the Modification Technology of Clay Minerals[J]. Conservation and Utilization of Mineral Resources, 2018, (5): 139-142. doi: 10.13779/j.cnki.issn1001-0076.2018.05.017
Citation: YAN Chunjie, LIU Yi, LI Zhen, WANG Hongquan, ZHU Xiaoyan, DUAN Ping. Current Research of the Modification Technology of Clay Minerals[J]. Conservation and Utilization of Mineral Resources, 2018, (5): 139-142. doi: 10.13779/j.cnki.issn1001-0076.2018.05.017

Current Research of the Modification Technology of Clay Minerals

  • Clay minerals are abundant, cheap and readily available. The clay particles are fine and can be used in various industrial applications. However, due to the geological evolution, the surface activity is decreased or lost. The "nanometerization effect" is eliminated by particle aggregation and shaping. Clay minerals that have not been functionally modified cannot meet the requirements of current new materials and new technologies. Therefore, physical and chemical transformation of clay mineral materials is required. In view of different industrial applications, this review summarizes the active excitation and functionalization preparation techniques such as activation, grafting and intercalation in the application of clay silicate minerals.

  • 加载中
  • [1] 张汀兰, 曾雄丰, 张文丽.粘土插层研究进展[J].山东陶瓷, 2015(3):8-12. doi: 10.3969/j.issn.1005-0639.2015.03.003

    CrossRef Google Scholar

    [2] 姜腾达.粘土矿物对水中Pb2+、Cu2+、Cd2+的吸附及机理研究[D].长沙: 中南大学, 2014.

    Google Scholar

    [3] 易发成, 王哲.粘土矿物在环境保护领域的应用现状和发展前景[C].桂林: proceedings of the全国非金属矿产地质学术研讨会, 2005.

    Google Scholar

    [4] 杨南如, 徐玲玲.粘土的结构特点和开发利用[J].建筑材料学报, 2003(4):337-344. doi: 10.3969/j.issn.1007-9629.2003.04.001

    CrossRef Google Scholar

    [5] 徐小彬.偏高岭土的结构特点及其应用研究综述[J].大众科技, 2012(6):129-130.

    Google Scholar

    [6] Huang Y, Deng J, Wang W, et al. Preliminary investigation of pozzolanic properties of calcined waste kaolin[J]. Mater sci, 2018, 24(2):181-192.

    Google Scholar

    [7] 魏博, 张一敏, 包申旭.煅烧制度对高岭土活性及地聚物性能的影响[J].非金属矿, 2016(4):31-34. doi: 10.3969/j.issn.1000-8098.2016.04.010

    CrossRef Google Scholar

    [8] Lin M, Liu Y Y, Lei S M, et al. High-efficiency extraction of al from coal-series kaolinite and its kinetics by calcination and pressure acid leaching[J]. Appl clay sci, 2018, 161:215-224. doi: 10.1016/j.clay.2018.04.031

    CrossRef Google Scholar

    [9] Liew Y M, Heah C Y, Mohd Mustafa A B, et al. Structure and properties of clay-based geopolymer cements:a review[J]. Prog mater sci, 2016, 83:595-629. doi: 10.1016/j.pmatsci.2016.08.002

    CrossRef Google Scholar

    [10] Zhang Z H, Zhu H J, Zhou C H, et al. Geopolymer from kaolin in china:an overview[J]. Appl clay sci, 2016, 119:31-41. doi: 10.1016/j.clay.2015.04.023

    CrossRef Google Scholar

    [11] 孔德顺, 宋说讲, 王茜, 等.基于碱融活化的高岭土水热法制备干燥剂NaP分子筛[J].硅酸盐通报, 2017(11):3653-3658.

    Google Scholar

    [12] Zhang J, He Y, Wang Y, et al. Synthesis of a self-supporting faujasite zeolite membrane using geopolymer gel for separation of alcohol/water mixture[J]. Mater lett, 2014, 116:167-170. doi: 10.1016/j.matlet.2013.11.008

    CrossRef Google Scholar

    [13] 多喜.高岭土改性吸附材料的制备表征及其吸附性能的研究[D].呼和浩特: 内蒙古师范大学, 2017.

    Google Scholar

    [14] 金敏丽.高岭土改性吸附材料的制备表征及其吸附性能[J].化工管理, 2018(15):35-36. doi: 10.3969/j.issn.1008-4800.2018.15.028

    CrossRef Google Scholar

    [15] Komadel P. Acid activated clays:materials in continuous demand[J]. Appl clay sci, 2016, 131:84-99. doi: 10.1016/j.clay.2016.05.001

    CrossRef Google Scholar

    [16] Komadel P, Madejová J. Acid activation of clay minerals[J]. Developments in clay science, 2006, 1(5):263-287.

    Google Scholar

    [17] Duan P, Yan C, Luo W. A novel waterproof, fast setting and high early strength repair material derived from metakaolin geopolymer[J]. Constr build mater, 2016, 124:69-73. doi: 10.1016/j.conbuildmat.2016.07.058

    CrossRef Google Scholar

    [18] Li X, Yan C, Luo W, et al. Exceptional cerium(iii) adsorption performance of poly(acrylic acid) brushes-decorated attapulgite with abundant and highly accessible binding sites[J]. Chem. eng. j., 2016, 284:333-342. doi: 10.1016/j.cej.2015.09.003

    CrossRef Google Scholar

    [19] AǐtAghzzaf A, Rhouta B, Rocca E, et al. Grafted palygorskite as containers of heptanoate for corrosion protection of steel in nacl medium[J]. Corros sci, 2017, 114:88-95. doi: 10.1016/j.corsci.2016.10.028

    CrossRef Google Scholar

    [20] Lei Z Q, Wen S X. Synthesis and decoloration capacity of well-defined and pmma-grafted palygorskite nanocomposites[J]. Eur. polym j., 2008, 44(9):2845-2849. doi: 10.1016/j.eurpolymj.2008.03.023

    CrossRef Google Scholar

    [21] Molatlhegi O, Alagha L. Adsorption characteristics of chitosan grafted copolymer on kaolin[J]. Appl clay sci, 2017, 150:342-353. doi: 10.1016/j.clay.2017.09.032

    CrossRef Google Scholar

    [22] Taimur S, Yasin T. Influence of the synthesis parameters on the properties of amidoxime grafted sepiolite nanocomposites[J]. Appl surf sci, 2017, 422:239-246. doi: 10.1016/j.apsusc.2017.05.263

    CrossRef Google Scholar

    [23] 梁学峰.黏土矿物表面修饰及其吸附重金属离子的性能规律研究[D].天津: 天津大学, 2015.

    Google Scholar

    [24] 张乾, 张白梅, 张玉德, 等.机械力化学法制备硅烷接枝高岭石的研究[J].硅酸盐通报, 2017(3):942-946.

    Google Scholar

    [25] 周奇.粘土矿物的有机功能化及其重金属吸附特性研究[D].武汉: 中国地质大学, 2016.

    Google Scholar

    [26] 林美群, 马少健.偶联剂在非金属矿物改性中的应用[C].衢州: 第十三届全国粉体工程及矿产资源高效开发利用研讨会, 2007.

    Google Scholar

    [27] 赵丽颖, 蒋引珊, 王秀平.改性粘土矿物在橡胶中的应用[J].世界地质, 2001(1):95-99. doi: 10.3969/j.issn.1004-5589.2001.01.018

    CrossRef Google Scholar

    [28] 朱小燕, 严春杰, 陈洁渝.脲插层技术对茂名高岭土粘浓度的影响[J].非金属矿, 2010(4):50-53.

    Google Scholar

    [29] 曹明礼, 余永富, 袁继祖, 等.插层型粘土复合材料的制备与研究现状[J].非金属矿, 2002(4):5-7. doi: 10.3969/j.issn.1000-8098.2002.04.001

    CrossRef Google Scholar

    [30] Wang Y, Shui Z, Huang Y, et al. Improving the pozzolanic activity of metakaolin by urea intercalation technique[J]. Constr build mater, 2018, 172:19-28. doi: 10.1016/j.conbuildmat.2018.03.189

    CrossRef Google Scholar

    [31] 马原野, 王占红, 侯贵华, 等.插层改性膨润土对聚合物基摩擦材料摩擦性能的影响[J].工程塑料应用, 2018(5):6-11. doi: 10.3969/j.issn.1001-3539.2018.05.002

    CrossRef Google Scholar

    [32] 彭志刚, 张博建, 冯茜, 等.聚合物插层蒙脱土复合型高温缓凝剂的制备及性能[J].硅酸盐学报, 2018, 46(8):1087-1094.

    Google Scholar

    [33] Zhang Y, Tang A, Yang H, et al. Applications and interfaces of halloysite nanocomposites[J]. Appl clay sci, 2016, 119:8-17. doi: 10.1016/j.clay.2015.06.034

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Article Metrics

Article views(854) PDF downloads(213) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint