Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2018 Vol. 38, No. 3
Article Contents

XIAO Yiwu, FANG Mingshan, FU Qiang, YE Xiaolu, MA Nan. New Techniques and Concepts in Process Mineralogy[J]. Conservation and Utilization of Mineral Resources, 2018, (3): 49-54. doi: 10.13779/j.cnki.issn1001-0076.2018.03.009
Citation: XIAO Yiwu, FANG Mingshan, FU Qiang, YE Xiaolu, MA Nan. New Techniques and Concepts in Process Mineralogy[J]. Conservation and Utilization of Mineral Resources, 2018, (3): 49-54. doi: 10.13779/j.cnki.issn1001-0076.2018.03.009

New Techniques and Concepts in Process Mineralogy

  • In recent years, automated mineral analyzer based on SEM such as QEMSCAN, MLA, AMICS have been widely used in mineral automatic identification and measurement. Because of its advantages in trace detection, laser ablation plasma mass spectrometry (LA-ICP-MS) has made the study of the occurrence state of elements more accurate and thorough. Time of flight secondary ion mass spectrometry (TOF-SIMS) provides a convenient and reliable method for the study of the surface characteristics and change. In the geological exploration stage, based on the process mineralogy research of the sample in different sections, some large mining enterprises pay attention to the influence of the changes in the ore properties on the beneficiation process and indicators. In terms of the present research results, continuous improvement on automatic measurement and intelligent mineral analysis technology, mathematical model to forecast the index of mineral processing, and mineral 3D characterization technology in process mineralogy are the new trends of sustainable development and direction.

  • 加载中
  • [1] Gu Y. Automated scanning electron microscope based mineral liberation analysis[J]. Journal of Minerals and Materials Characterization and Engineering, 2003, 2(1):33-41. doi: 10.4236/jmmce.2003.21003

    CrossRef Google Scholar

    [2] 贾木欣.国外工艺矿物学进展及发展趋势[J].矿冶, 2007, 16(2):95-99.

    Google Scholar

    [3] 高歌, 王艳.MLA自动检测技术在工艺矿物学研究中的应用[J].黄金, 2015(10):66-69. doi: 10.11792/hj201510015

    CrossRef Google Scholar

    [4] 彭明生, 刘晓文, 刘羽.工艺矿物学近十年的主要进展[J].矿物岩石地球化学通报, 2012, 31(3):210-217.

    Google Scholar

    [5] Duncan M. Smythe, Annegret Lombard, LouisL. Coetzee. Rare earth element deportment studies utilising QEMSCAN technology[J]. Minerals Engineering, 2013, 52:52-61. doi: 10.1016/j.mineng.2013.03.010

    CrossRef Google Scholar

    [6] 庞建涛, 肖喆, 王灿霞, 等.MLA系统在磷块岩工艺矿物学研究中的应用[J].化工矿物与加工, 2015(10):19-21.

    Google Scholar

    [7] 陈占华, 陈湘清, 李莎莎, 等.澳大利亚昆士兰州某铝土矿工艺矿物学研究[J].矿产综合利用, 2013(5):50-54.

    Google Scholar

    [8] 方明山, 肖仪武, 童捷矢.山东某金矿中金的赋存状态研究[J].矿冶, 2012, 21(3):91-94.

    Google Scholar

    [9] 方明山, 肖仪武, 童捷矢. 某金矿工艺矿物学研究[C]//矿山深部找矿理论与实践暨矿山工艺矿物学研究学术交流论文集. 北京: 冶金工业出版社, 2012: 341-347.

    Google Scholar

    [10] Wei Terry Chen, Meifu Zhou, Xiaochun Li, et al. In-situ LA-ICP-MS trace elemental analyses of magnetite:Cu-(Au, Fe)deposits in the khetricopper belt in rajasthanprovince, NW India[J]. Ore Geology Reviews, 2015, 65:929-939. doi: 10.1016/j.oregeorev.2014.09.035

    CrossRef Google Scholar

    [11] 游俊富, 王虎, 赵海山.几种新型号二次离子质谱仪采用的新技术[J].现代仪器, 2005(1):39-41.

    Google Scholar

    [12] 余兴.激光剥蚀电感耦合等离子体质谱新进展[J].中国无机分析化学, 2012, 2(1):9-16.

    Google Scholar

    [13] 章守成, 王文挺, 方德, 等.黄铁矿LA-ICP-MS原位测试与分析[J].现代矿业, 2016(9):195-198.

    Google Scholar

    [14] 王岚, 杨理勤, 王亚平, 等.激光剥蚀电感耦合等离子体质谱微区分析进展评述[J].地质通报, 2012, 31(4):637.

    Google Scholar

    [15] 沙克雷顿NJ.砷化铂和砷化钯的表面性质及其可浮性[J].国外金属矿选矿, 2008(5):19-27.

    Google Scholar

    [16] 阿尔弗来德·贝宁豪文, 查良镇.飞行时间二次离子质谱-强有力的表面、界面和薄膜分析手段[J].真空, 2002(2):10-14.

    Google Scholar

    [17] 包泽民, 刘光达, 龙涛, 等.铜合金表面元素的飞行时间二次离子质谱微区原位分析[J].质谱学报, 2016, 37(3):229-235. doi: 10.7538/zpxb.2016.37.03.0229

    CrossRef Google Scholar

    [18] 皮安塔多西C.由飞行时间二次离子质谱法结果统计比较浮选精矿和尾矿中方铅矿和黄铁矿颗粒的疏水性和亲水性组分[J].国外金属矿选矿, 2002(10):37-43.

    Google Scholar

    [19] 雷晓春, 林鹿, 李可成.XPS、AFM和TOF-SIMS的工作原理及在植物纤维表面分析中的应用[J].中国造纸学报, 2006, 21(4):97-101.

    Google Scholar

    [20] Böttgera U, Pavlova SG, Deßmannb N, et al. Laser-induced alteration of ramanspectra for micron-sized solid particles[J].Planetary and Space Science, 2017, 138:25-32. doi: 10.1016/j.pss.2017.02.001

    CrossRef Google Scholar

    [21] Fornasiero D, Ralston J. Iron hydroxide complexes and their influence on the interaction between ethylxanthat and pyrite[J]. Colloid Interface Sci., 1992, 151:225-235. doi: 10.1016/0021-9797(92)90253-I

    CrossRef Google Scholar

    [22] Fornasiero D, Li F, Ralston J, et al. Oxidation of galena surfaces:Ⅰ. X-ray photoelectron spectroscopic and dissolution kinetics studies[J]. Colloid Interface Sci., 1994, 164:333-344. doi: 10.1006/jcis.1994.1175

    CrossRef Google Scholar

    [23] Fornasiero D, Li F, Ralston J, et al. Oxidation of galena:Ⅱ. electrokinetic study[J]. Colloid Interface Sci., 1994, 164:345-354. doi: 10.1006/jcis.1994.1176

    CrossRef Google Scholar

    [24] Yongjun Peng, Stephen Grano, Daniel Fornasiero, et al. Control of grinding conditions in the flotation ofgalena and its separation from pyrite[J]. Int. J. Miner. Process, 2003, 70:67-82. doi: 10.1016/S0301-7516(02)00153-9

    CrossRef Google Scholar

    [25] Carlo Philander, Abraham Rozendaal. The application of a novel geometallurgical template model tocharacterise the namakwasands heavy mineral deposit, west coast of South Africa[J]. Minerals Engineering, 2013, 52:82-94. doi: 10.1016/j.mineng.2013.04.011

    CrossRef Google Scholar

    [26] Philander C, Rozendaal A. A process mineralogy approach to geometallurgical model refinementfor the namakwasands heavy minerals operations, west coast of South Africa[J]. Minerals Engineering, 2014, 65:9-16. doi: 10.1016/j.mineng.2014.04.006

    CrossRef Google Scholar

    [27] Suazoa CJ, Kracht W, Alruiz OM. Geometallurgical modelling of the collahuasi-flotation circuit[J]. Minerals Engineering, 2010, 23:137-142. doi: 10.1016/j.mineng.2009.11.005

    CrossRef Google Scholar

    [28] Aparup Chattopadhyay, Stamen Dimov, Brian Hart, et al. Novel gold deportment technique-applications for complex copper-gold and refractory gold ores[C]. Quebec: XXVⅢ International Mineral Processing Congress, 2016.

    Google Scholar

    [29] Lotter NO, Oliveira JF, Hannaford AL, et al. Flowsheet development for the kamoaproject-acase study[J]. Minerals Engineering, 2013, 52:8-20. doi: 10.1016/j.mineng.2013.02.014

    CrossRef Google Scholar

    [30] Dzvinamurungu T, Viljoen KS, Knoper MW. Geometallurgical characterisation of merenskyreef and UG2 at themarikanamine, bushveld complex, South Africa[J]. Minerals Engineering, 2013, 52:74-81. doi: 10.1016/j.mineng.2013.04.010

    CrossRef Google Scholar

    [31] Lotter NO, Kormos LJ, Oliveira J, et al. Modern process mineralogy:two case studies[J]. Minerals engineering, 2011, 24:638-650. doi: 10.1016/j.mineng.2011.02.017

    CrossRef Google Scholar

    [32] Baumgartner R, Dusci M, GressierJ, et al. Building a geometallurgical modelforearly-stage project development-A case study from the canahuire epithermal Au-Cu-Ag deposit, Southern Peru[J]. Proceedings 1st AUSIMM International Geometallurgical Conference, 2011:53-59.

    Google Scholar

    [33] Gianni Schena, Luca Santoro, Stefano Favretto. Conceiving a high resolution and fast X-ray CT systemfor imaging fine multi-phase mineral particlesand retrieving mineral liberation spectra[J]. Miner. Process, 2007, 84:327-336. doi: 10.1016/j.minpro.2006.10.002

    CrossRef Google Scholar

    [34] Jan D. Miller, Chen Luh Lin, Lukasz Hupka, et al. Liberation-limited grade/recovery curves from X-ray micro CT analysis of feedmaterial for the evaluation of separation efficiency[J]. Miner. Process, 2009, 93:48-53. doi: 10.1016/j.minpro.2009.05.009

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(3)

Article Metrics

Article views(1109) PDF downloads(7) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint