2025 Vol. 34, No. 2
Article Contents

LI Qiu-yan, HE Peng-fei, WEI Ming-hui, LIU Guo-dong, ZHANG Yi-he, HAN Xiao-meng. Geochemical evaluation of land quality in eastern Oroqen Qi, Inner Mongolia[J]. Geology and Resources, 2025, 34(2): 225-231. doi: 10.13686/j.cnki.dzyzy.2025.02.010
Citation: LI Qiu-yan, HE Peng-fei, WEI Ming-hui, LIU Guo-dong, ZHANG Yi-he, HAN Xiao-meng. Geochemical evaluation of land quality in eastern Oroqen Qi, Inner Mongolia[J]. Geology and Resources, 2025, 34(2): 225-231. doi: 10.13686/j.cnki.dzyzy.2025.02.010

Geochemical evaluation of land quality in eastern Oroqen Qi, Inner Mongolia

More Information
  • Based on the soil nutrient and environmental data obtained from the 1 ∶ 250 000 geochemical survey of land quality covering 3 000 km2 in eastern Oroqen Qi, this study evaluates the soil nutrient abundance/deficiency and environmental quality in accordance with DZ/T 0295 "Specifications for Geochemical Evaluation of Land Quality" and GB15618 "Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land (Trial)". The results show that soil nutrient in the study area is predominantly assigned as Grade Ⅰ (abundant) and Grade Ⅱ (relatively abundant), accounting for 75.1% and 24.4% of the total area respectively. No Grade Ⅳ (relatively deficient) or Grade Ⅴ(deficient) nutrient soils are identified yet, although B, Cu and Mg are deficient. The soil environmental quality is primarily classified as Grade Ⅰ (risk-free), covering over 97% of the area, with Zn, Hg and Pb concentrations maintaining risk-free grade throughout the region. The comprehensive geochemical land quality is mainly Grade Ⅰ (excellent), encompassing 2 920 km2 or 97.34% of the total area. This study may provide geological data support for promoting high-quality agricultural economic development in Oroqen Qi.

  • 加载中
  • [1] 王磊, 卓小雄, 吴天生, 等. 基于1∶ 25万和1∶ 5万土地质量地球化学调查评价的土壤元素累积趋势预测——以广西南宁市西乡塘区为例[J]. 物探与化探, 2023, 47(1): 1-13.

    Google Scholar

    Wang L, Zhuo X X, Wu T S, et al. Prediction of the soil element accumulation trends based on 1∶ 250 000 and 1∶ 50 000 geochemical surveys and assessments of land quality: A case study of Xixiangtang District, Nanning City, Guangxi Zhuang Autonomous Region[J]. Geophysical & Geochemical Exploration, 2023, 47(1): 1-13.

    Google Scholar

    [2] 姜冰, 张海瑞, 刘阳, 等. 青州市南张楼村土地质量地球化学特征及特色土地资源评价[J]. 山东国土资源, 2022, 38(1): 54-59.

    Google Scholar

    Jiang B, Zhang H R, Liu Y, et al. Geochemical characteristic of land quality and typical land resources evaluation in Nanzhanglou Village in Qingzhou City[J]. Shandong Land and Resources, 2022, 38(1): 54-59.

    Google Scholar

    [3] 姜长松, 刘进, 谢静博, 等. 冀中平原典型区土地质量地球化学评价[J]. 安徽农学通报, 2023, 29(9): 153-156.

    Google Scholar

    Jiang C S, Liu J, Xie J B, et al. Geochemical evaluation of land quality in typical areas of Jizhong Plain[J]. Anhui Agricultural Science Bulletin, 2023, 29(9): 153-156. (in Chinese)

    Google Scholar

    [4] 常婵, 高艳芳, 孙彬彬, 等. 土地质量地球化学调查土壤采样点智能化布设研究[J]. 物探化探计算技术, 2023, 45(6): 824-832. doi: 10.3969/j.issn.1001-1749.2023.06.15

    CrossRef Google Scholar

    Chang C, Gao Y F, Sun B B, et al. Research on intelligent arrangement of soil sampling points in a geochemical survey of land quality[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2023, 45(6): 824-832. doi: 10.3969/j.issn.1001-1749.2023.06.15

    CrossRef Google Scholar

    [5] 刘国栋, 杨泽, 戴慧敏, 等. 黑龙江省海伦市长发镇土地质量地球化学评价及开发建议[J]. 地质与资源, 2020, 29(6): 533-542. doi: 10.13686/j.cnki.dzyzy.2020.06.005

    CrossRef Google Scholar

    Liu G D, Yang Z, Dai H M, et al. Geochemical evaluation of land quality and development suggestion of land in Hailun City, Heilongjiang Province[J]. Geology and Resources, 2020, 29(6): 533-542. doi: 10.13686/j.cnki.dzyzy.2020.06.005

    CrossRef Google Scholar

    [6] 中华人民共和国国土资源部. DZ/T 0295—2016土地质量地球化学评价规范[S]. 北京: 中国标准出版社, 2016.

    Google Scholar

    Ministry of Land and Resources, PRC. DZ/T 0295—2016 Determination of land quality geochemical evaluation[S]. Beijing: Standards Press of China, 2016.

    Google Scholar

    [7] 环境保护部, 国家质量监督检验检疫总局. GB 15618—2018土壤环境质量农用地土壤污染风险管控标准(试行)[S]. 北京: 中国标准出版社, 2019.

    Google Scholar

    Ministry of Ecology and Environment of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB 15618—2018 Soil environmental quality risk control standard for soil contamination of agricultural land[S]. Beijing: Standards Press of China, 2019. (in Chinese)

    Google Scholar

    [8] 陈兴, 吴开彬, 王军, 等. 贵州省仁怀市耕地土壤养分地球化学特征及其影响因素研究[J]. 中国地质, 2022, 49(3): 860-879.

    Google Scholar

    Chen X, Wu K B, Wang J, et al. Geochemical characteristics and influencing factors of soil nutrients in cultivated land in Renhuai, Guizhou Province[J]. Geology in China, 2022, 49(3): 860-879.

    Google Scholar

    [9] 李秋燕, 张一鹤, 魏明辉, 等. 海伦市土壤主要微量元素空间分布特征[J]. 物探与化探, 2022, 46(5): 1114-1120.

    Google Scholar

    Li Q Y, Zhang Y H, Wei M H, et al. Spatial distribution of the soil trace elements in Hailun City[J]. Geophysical and Geochemical Exploration, 2022, 46(5): 1114-1120.

    Google Scholar

    [10] 袁淑雅, 贺晶, 苏德荣. 降水格局变化和放牧对草地土壤磷转化影响的研究进展[J]. 草地学报, 2024, 32(1): 25-36.

    Google Scholar

    Yuan S Y, He J, Su D R. Advances in the effects of precipitation pattern change and grazing on soil phosphorus conversion in grassland [J]. Acta Agrestia Sinica, 2024, 32(1): 25-36.

    Google Scholar

    [11] 魏明辉, 许江, 李秋燕, 等. 内蒙古鄂伦春旗土壤钼元素的分布特征及主要影响因素[J]. 地质与资源, 2020, 29(6): 609-613. doi: 10.13686/j.cnki.dzyzy.2020.06.017

    CrossRef Google Scholar

    Wei M H, Xu J, Li Q Y, et al. Distribution characteristics and main influencing factors of soil molybdenum in Oroqen Qi, Inner Mongolia [J]. Geology and Resources, 2020, 29(6): 609-613. doi: 10.13686/j.cnki.dzyzy.2020.06.017

    CrossRef Google Scholar

    [12] 陈玉真, 单睿阳, 王峰, 等. 闽中茶园土壤和茶叶铁锰含量及影响因素研究[J]. 福建农业学报, 2018, 33(9): 986-993.

    Google Scholar

    Chen Y Z, Shan R Y, Wang F, et al. Factors affecting iron and manganese contents of tea leaves and plantation soil in central Fujian [J]. Fujian Journal of Agricultural Sciences, 2018, 33(9): 986-993.

    Google Scholar

    [13] 张一鹤, 杨泽, 戴慧敏, 等. 穆棱河-兴凯湖平原土地质量地球化学评价[J]. 地质与资源, 2021, 30(1): 62-70. doi: 10.13686/j.cnki.dzyzy.2021.01.008

    CrossRef Google Scholar

    Zhang Y H, Yang Z, Dai H M, et al. Geochemical evaluation of land quality in Muling River-Xingkai Lake Plain[J]. Geology and Resources, 2021, 30(1): 62-70. doi: 10.13686/j.cnki.dzyzy.2021.01.008

    CrossRef Google Scholar

    [14] 方士武, 骆方明. 无为县耕地土壤有效锌含量评价与分析[J]. 现代农业科技, 2020(10): 160-161.

    Google Scholar

    Fang S W, Luo F M. Evaluation and analysis of available zinc content in cultivated soil in Wuwei County[J]. Modern Agricultural Science and Technology, 2020(10): 160-161. (in Chinese)

    Google Scholar

    [15] 赵阿娟, 刘琼峰, 周世民, 等. 白云石粉与氧化镁肥对植烟土壤与烟叶钙镁营养元素的影响[J]. 中国农学通报, 2024, 40(1): 7-11.

    Google Scholar

    Zhao A J, Liu Q F, Zhou S M, et al. Effects of dolomite powder and magnesium oxide fertilizer on calcium and magnesium nutrient elements in tobacco planting soil and tobacco leaves[J]. Chinese Agricultural Science Bulletin, 2024, 40(1): 7-11.

    Google Scholar

    [16] 段轶仁, 杨忠芳, 杨琼, 等. 广西北部湾地区土壤锗分布特征、影响因素及其生态环境评价[J]. 中国地质, 2020, 47(6): 1826-1837.

    Google Scholar

    Duan Y R, Yang Z F, Yang Q, et al. The distribution, influencing factors and ecological environment evaluation of soil germanium in Beibu Gulf of Guangxi Zhuang Autonomous Region[J]. Geology in China, 2020, 47(6): 1826-1837.

    Google Scholar

    [17] 齐小芳, 程智慧. 植物对锗的吸收利用及其生理功能研究进展[J]. 中国蔬菜, 2020(8): 14-18.

    Google Scholar

    Qi X F, Cheng Z H. Research progress on absorption and utilization of germanium (Ge) and its physiological function in plant[J]. China Vegetables, 2020(8): 14-18.

    Google Scholar

    [18] 马琦琦, 李丽君, 王斌, 等. 硼对藜麦抗氧化酶活性的影响[J]. 安徽农业科学, 2023, 51(24): 139-143.

    Google Scholar

    Ma Q Q, Li L J, Wang B, et al. Effects of boron on the antioxidant enzymes activity of quinoa[J]. Journal of Anhui Agricultural Sciences, 2023, 51(24): 139-143.

    Google Scholar

    [19] 赫丽飞, 周仲乐, 马春婕, 等. 植物铜转运蛋白结构、功能及调控机制[J]. 中国细胞生物学学报, 2022, 44(12): 2411-2420.

    Google Scholar

    He L F, Zhou Z L, Ma C J, et al. Structure, function and regulatory mechanism of COPT in plants[J]. Chinese Journal of Cell Biology, 2022, 44(12): 2411-2420.

    Google Scholar

    [20] 尤垂淮, 孙青慧, 陈晟, 等. 镁营养对苦瓜生长发育及生理代谢的影响[J]. 热带作物学报, 2021, 42(12): 3545-3552.

    Google Scholar

    You C H, Sun Q H, Chen S, et al. Effects of magnesium nutrition on the growth and development of Momordica charantia and its physiological metabolism[J]. Chinese Journal of Tropical Crops, 2021, 42(12): 3545-3552.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(5)

Article Metrics

Article views(100) PDF downloads(31) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint