2025 Vol. 34, No. 1
Article Contents

WEI Lu-ning, GUO Yong-gang, ZHOU Xing-bo. Main controlling factor analysis and susceptibility assessment of landslides in southeastern Xizang based on optimized random forest model[J]. Geology and Resources, 2025, 34(1): 112-127. doi: 10.13686/j.cnki.dzyzy.2025.01.013
Citation: WEI Lu-ning, GUO Yong-gang, ZHOU Xing-bo. Main controlling factor analysis and susceptibility assessment of landslides in southeastern Xizang based on optimized random forest model[J]. Geology and Resources, 2025, 34(1): 112-127. doi: 10.13686/j.cnki.dzyzy.2025.01.013

Main controlling factor analysis and susceptibility assessment of landslides in southeastern Xizang based on optimized random forest model

More Information
  • Taking the southeastern Xizang Region as the research object, the paper analyzes the landslide susceptibility based on optimized random forest(RF) model, and discusses the main influencing factors of landslides. With field survey, remote sensing data analysis and literature review, the study screens the landslide and non-landslide samples systematically, and optimizes the landslide and non-landslide sample screening methods of models, selection of impact factors, application of connection approach and hyperparameters. The random forest model (multi-objective optimization) is optimized by non-dominated sorting genetic algorithm (NSGA-Ⅱ) and compared with RF-GA mode (single objective optimization). The four indexes of optimal accuracy, recall rate, precision rate and F1 are increased by 3.3%, 8.7%, 3.2% and 1.9%, respectively, compared with the RF-GA model. Besides, the high, relatively high and medium susceptible areas increased by 2.7%, 3.1% and 1.2%, respectively, in terms of landslide susceptibility zoning. The high accuracy of RF-NSGA-Ⅱ model is verified (AUC=0.877) by drawing ROC curve and calculating AUC value. The results show that the landslide susceptible areas in southeastern Xizang are mainly concentrated in the intersection of Yigong Zangbo River and Palong Zangbo River and the big bend area of Yarlung Zangbo River. In the importance ranking of landslide impact factors, distance from road, elevation and distance from river take up the top places, as complex geological structures, densely developed faults and influence of long-term tectonic activities cause frequent landslides in such areas, especially in high susceptible areas with criss-crossing faults, broken rocks and developed joints.

  • 加载中
  • [1] 许强. 对滑坡监测预警相关问题的认识与思考[J]. 工程地质学报, 2020, 28(2): 360-374.

    Google Scholar

    Xu Q. Understanding the landslide monitoring and early warning: Consideration to practical issues[J]. Journal of Engineering Geology, 2020, 28(2): 360-374.

    Google Scholar

    [2] 韩用顺. 藏东南地质灾害易发性评价[J]. 山地学报, 2021, 39(5): 700.

    Google Scholar

    Han Y S. Assessment of geological disaster susceptibility in southeastern Xizang[J]. Mountain Research, 2021, 39(5): 700. (in Chinese)

    Google Scholar

    [3] 冉涛, 徐如阁, 周洪福, 等. 雅砻江流域深切河谷区滑坡类型、成因及分布规律——以子拖西-麻郎错河段为例[J]. 中国地质, 2024, 51(2): 511?524.

    Google Scholar

    Ran T, Xu R G, Zhou H F, et al. Type, formation mechanism and distribution regularity of landslides in the deeply incised valley area of Yalong River Basin: A case study of Zituoxi-Malangcuo River section [J]. Geology in China, 2024, 51(2): 511-524.

    Google Scholar

    [4] 牛犇, 冯春, 丛俊余, 等. 基于CDEM颗粒流的三维高速远程滑坡成灾范围分析[J]. 岩石力学与工程学报, 2023, 42(S2): 4018-4027.

    Google Scholar

    Niu B, Feng C, Cong J Y, et al. Three-dimensional high-speed remote landslide disaster area analysis based on CDEM particle flow [J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(S2): 4018-4027.

    Google Scholar

    [5] 袁浩, 郭长宝, 吴瑞安, 等. 西藏易贡高位远程滑坡研究进展与展望[J]. 地质通报, 2023, 42(10): 1757-1773.

    Google Scholar

    Yuan H, Guo C B, Wu R A, et al. Research progress and prospects of the giant Yigong long run-out landslide, Xizang Plateau, China[J]. Geological Bulletin of China, 2023, 42(10): 1757-1773.

    Google Scholar

    [6] 王哲, 赵超英, 刘晓杰, 等. 西藏易贡滑坡演化光学遥感分析与InSAR形变监测[J]. 武汉大学学报(信息科学版), 2021, 46(10): 1569-1578.

    Google Scholar

    Wang Z, Zhao C Y, Liu X J, et al. Evolution analysis and deformation monitoring of Yigong landslide in Xizang with optical remote sensing and InSAR[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1569-1578.

    Google Scholar

    [7] 韩盼, 余国安, 侯伟鹏. 藏东南帕隆藏布流域冲积扇地貌发育特征及空间分异研究[J]. 地理科学进展, 2024, 43(4): 784-798.

    Google Scholar

    Han P, Yu G A, Hou W P. Geomorphological development characteristics and spatial differentiation of alluvial fans in high mountain canyon areas: A case study in the Parlung Tsangpo Basin, southeast Xizang[J]. Progress in Geography, 2024, 43(4): 784-798.

    Google Scholar

    [8] 杨帆, 马志刚, 文艳, 等. 联合SAR影像相位和幅度信息的多形变量级滑坡监测——以金沙江白格滑坡为例[J]. 自然资源遥感, 2024, 36(2): 257-267.

    Google Scholar

    Yang F, Ma Z G, Wen Y, et al. Monitoring a landslide with a multi-deformation magnitude based on the phase and amplitude information of SAR images: A case study of the Baige landslide in Jinsha River [J]. Remote Sensing for Natural Resources, 2024, 36(2): 257-267.

    Google Scholar

    [9] 付杰, 张青, 仉文岗. 基于多源数据与机器学习的降雨型滑坡灾害危险性动态预警[J]. 地质论评, 2024, 70(S1): 217-218.

    Google Scholar

    Fu J, Zhang Q, Zhang W G. Dynamic warning of rainfall-induced landslide hazard based on multi-source data and machine learning[J]. Geological Review, 2024, 70(S1): 217-218.

    Google Scholar

    [10] 张冬梅, 张莉. 对话姚檀栋: 走近第二次青藏高原综合科学考察[J]. 科学通报, 2019, 64(27): 2765-2769.

    Google Scholar

    Zhang D M, Zhang L. Tandong Yao: The second Xizang Plateau scientific expedition and research[J]. Chinese Science Bulletin, 2019, 64(27): 2765-2769.

    Google Scholar

    [11] 王悦, 曹颖, 许方党, 等. 考虑非滑坡样本选取和集成机器学习方法的水库滑坡易发性预测[J]. 地球科学, 2024, 49(5): 1619-1635.

    Google Scholar

    Wang Y, Cao Y, Xu F D, et al. Reservoir landslide susceptibility prediction considering non-landslide sampling and ensemble machine learning methods[J]. Earth Science, 2024, 49(5): 1619-1635.

    Google Scholar

    [12] 李正, 冷亮, 孙永鑫, 等. 基于信息量-机器学习耦合模型的水电梯级开发流域滑坡易发性评价[J]. 测绘通报, 2024(S1): 237-241.

    Google Scholar

    Li Z, Leng L, Sun Y X, et al. Landslide susceptibility assessment in the river cascade development basin based on the Ⅳ-LM coupling model[J]. Bulletin of Surveying and Mapping, 2024(S1): 237-241.

    Google Scholar

    [13] 茹曼, 郑燕, 张斌, 等. 基于SVM-RF模型的地质灾害易发性评价——以河南省博爱县青天河景区为例[J]. 地质与资源, 2023, 32(5): 633-641. DOI: 10.13686/j.cnki.dzyzy.2023.05.014.

    CrossRef Google Scholar

    Ru M, Zheng Y, Zhang B, et al. Assessment of geological disaster susceptibility based on SVM-RF MODEL: A case study of Qingtian River scenic area in Boai County, Henan Province[J]. Geology and Resources, 2023, 32(5): 633-641. DOI: 10.13686/j.cnki.dzyzy.2023.05.014.

    CrossRef Google Scholar

    [14] 李成林, 刘严松, 赖思翰, 等. 基于逻辑回归和支持向量机耦合模型的滑坡易发性分析[J]. 自然灾害学报, 2024, 33(2): 75-86.

    Google Scholar

    Li C L, Liu Y S, Lai S H, et al. Landslide susceptibility analysis based on the coupling model of logistic regression and support vector machine[J]. Journal of Natural Disasters, 2024, 33(2): 75-86.

    Google Scholar

    [15] 杜鹏, 陈宁生, 伍康林, 等. 基于随机森林模型的藏东南地区滑坡易发性评价及主控因素分析[J]. 成都理工大学学报(自然科学版), 2024, 51(2): 328-344.

    Google Scholar

    Du P, Chen N S, Wu K L, et al. Evaluation of landslide susceptibility in southeast Xizang based on a random forest model[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2024, 51(2): 328-344.

    Google Scholar

    [16] 林泊锟, 丁勇, 李登华. 一种基于深度学习与图像局部特征提取的边坡异常监测技术[J]. 测绘通报, 2024(4): 23-28.

    Google Scholar

    Lin B K, Ding Y, Li D H. A slope anomaly monitoring technology based on deep learning and image local feature extraction[J]. Bulletin of Surveying and Mapping, 2024(4): 23-28.

    Google Scholar

    [17] 冯旻譞, 毛伊敏, 贾俊, 等. 地质灾害危险性评价中不同机器学习方法优劣对比: 以宁强县大安镇为例[J/OL]. 中国地质, 1-13[2024-06-17].

    Google Scholar

    Feng M X, Mao Y M, Jia J, et al. Comparison of the advantages and disadvantages of different machine learning methods in geohazard risk assessment: Taking Da'an Town, Ningqiang County as an example [J/OL]. China Geology, 1-13[2024-06-17].

    Google Scholar

    [18] 蒋宏伟, 刘健鹏, 王新杰, 等. 随机森林优化的静动态耦合模型在滑坡位移预测中的应用[J]. 常州大学学报(自然科学版), 2024, 36(3): 80-92.

    Google Scholar

    Jiang H W, Liu J P, Wang X J, et al. Application of static dynamic coupling model optimized by random forest in landslide displacement prediction[J]. Journal of Changzhou University (Natural Science Edition), 2024, 36(3): 80-92.

    Google Scholar

    [19] 黄发明, 欧阳慰平, 蒋水华, 等. 考虑机器学习建模中训练/测试集时空划分原则的滑坡易发性预测建模[J]. 地球科学, 2024, 49(5): 1607-1618.

    Google Scholar

    Huang F M, Ouyang W P, Jiang S H, et al. Landslide susceptibility prediction considering spatio-temporal division principle of training/ testing datasets in machine learning models[J]. Earth Science, 2024, 49(5): 1607-1618.

    Google Scholar

    [20] 王本栋, 李四全, 许万忠, 等. 基于3种不同机器学习算法的滑坡易发性评价对比研究[J]. 西北地质, 2024, 57(1): 34-43.

    Google Scholar

    Wang B D, Li S Q, Xu W Z, et al. A comparative study of landslide susceptibility evaluation based on three different machine learning algorithms[J]. Northwestern Geology, 2024, 57(1): 34-43.

    Google Scholar

    [21] 周剑, 汤明高, 裴芳歌, 等. 基于机器学习的库岸滑坡变形短期预测[J]. 山地学报, 2023, 41(6): 891-903.

    Google Scholar

    Zhou J, Tang M G, Pei F G, et al. Short-term deformation of reservoir slope based on machine learning[J]. Mountain Research, 2023, 41(6): 891-903.

    Google Scholar

    [22] 翟文华, 王小东, 吴明堂, 等. 基于频率比模型和随机森林模型耦合的地质灾害易发性评价[J]. 自然灾害学报, 2023, 32(6): 74-82.

    Google Scholar

    Zhai W H, Wang X D, Wu M T, et al. Geological disaster susceptibility evaluation based on coupling of frequency ratio model and random forest model[J]. Journal of Natural Disasters, 2023, 32(6): 74-82.

    Google Scholar

    [23] Merghadi A, Yunus A P, Dou J, et al. Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance[J]. Earth-Science Reviews, 2020, 207: 103225.

    Google Scholar

    [24] Pawluszek K, Borkowski A. Impact of DEM-derived factors and analytical hierarchy process on landslide susceptibility mapping in the region of Roznów Lake, Poland[J]. Natural Hazards, 2017, 86(2): 919-952.

    Google Scholar

    [25] Yang H, Shi, P J, Quincey D, et al. A heterogeneous sampling strategy to model earthquake-triggered landslides[J]. International Journal of Disaster Risk Science, 2023, 14(4): 636-648.

    Google Scholar

    [26] Tabatabaei M, Salehpour Jam A, Ahmad Hosseini S. Suspended sediment load prediction using non-dominated sorting genetic algorithm Ⅱ[J]. International Soil and Water Conservation Research, 2019, 7(2): 119-129.

    Google Scholar

    [27] 吴辰文, 梁靖涵, 王伟, 等. 基于递归特征消除方法的随机森林算法[J]. 统计与决策, 2017(21): 60-63.

    Google Scholar

    Wu C W, Liang J H, Wang W, et al. Random forest algorithm based on recursive feature elimination[J]. Statistics & Decision, 2017(21): 60-63.

    Google Scholar

    [28] 孙德亮, 陈丹璐, 密长林, 等. 基于随机森林-特征递归消除模型的可解释性缓丘岭谷地貌滑坡易发性评价[J]. 地质力学学报, 2023, 29(2): 202-219.

    Google Scholar

    Sun D L Chen D L, Mi C L, et al. Evaluation of landslide susceptibility in the gentle hill-valley areas based on the interpretable random forest-recursive feature elimination model[J]. Journal of Geomechanics, 2023, 29(2): 202-219.

    Google Scholar

    [29] Cantarino I, Carrion M A, Goerlich F, et al. A ROC analysis-based classification method for landslide susceptibility maps[J]. Landslides, 2019, 16(2): 265-282.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(7)

Article Metrics

Article views(512) PDF downloads(197) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint