2025 Vol. 34, No. 1
Article Contents

WANG Jin-huan, XU Cheng-wu, QIAO Hong-liang, TANG Lu, LIU Tian-yong, QU Duan-gang, XU Jian, MENG Ying-jie, LI Yi-hong. Intelligent characterization of particles and pores in thin slice images of tight reservoirs based on deep learning algorithm[J]. Geology and Resources, 2025, 34(1): 61-69. doi: 10.13686/j.cnki.dzyzy.2025.01.007
Citation: WANG Jin-huan, XU Cheng-wu, QIAO Hong-liang, TANG Lu, LIU Tian-yong, QU Duan-gang, XU Jian, MENG Ying-jie, LI Yi-hong. Intelligent characterization of particles and pores in thin slice images of tight reservoirs based on deep learning algorithm[J]. Geology and Resources, 2025, 34(1): 61-69. doi: 10.13686/j.cnki.dzyzy.2025.01.007

Intelligent characterization of particles and pores in thin slice images of tight reservoirs based on deep learning algorithm

More Information
  • In the thin-section image analysis of tight sandstone reservoir, to solve the problems such as low accuracy and heavy work of traditional methods, TransUnet and Unet neural networks by combining Transformer with convolutional neural network(CNN) are used for efficient characterization of particles and pores. The TransUnet has excellent performance in particle characterization. The experiment shows that the intersection over union(IoU) reaches 0.86, with the recall rate of 0.824 and precision of 0.839, which is superior to traditional methods, proving its effectiveness in tight particle segmentation. The Unet shows efficient characterization of pores as well, with the IoU of 0.824, recall rate of 0.843 and precision of 0.953. Besides, experiment indicates that although porosity affects IoU, the model still maintains high efficiency and accuracy generally. These results fully demonstrate that deep learning method, especially TransUnet, is significantly effective in accurate segmentation of thin section images of complex tight reservoir, providing new ideas for the study of unconventional tight reservoir and showing its great potential in the field of geology.

  • 加载中
  • [1] 苏程, 朱孔阳. 岩石薄片图像智能分析研究进展[J]. 矿物岩石地球化学通报, 2023, 42(1): 13-25.

    Google Scholar

    Su C, Zhu K Y. Research progress of intelligent image analysis for petrographic thin section images[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2023, 42(1): 13-25.

    Google Scholar

    [2] 陈宇豪. 简述薄片鉴定在岩石特征分析中的应用[J]. 新疆有色金属, 2022, 45(4): 23-24.

    Google Scholar

    Chen Y H. The application of thin section identification in rock characteristic analysis[J]. Xinjiang Nonferrous Metals, 2022, 45(4): 23-24. (in Chinese)

    Google Scholar

    [3] Tang D G, Milliken K L, Spikes K T. Machine learning for point counting and segmentation of arenite in thin section[J]. Marine and Petroleum Geology, 2020, 120: 104518. doi: 10.1016/j.marpetgeo.2020.104518

    CrossRef Google Scholar

    [4] Das R, Mondal A, Chakraborty T, et al. Deep neural networks for automatic grain-matrix segmentation in plane and cross-polarized sandstone photomicrographs[J]. Applied Intelligence, 2022, 52(3): 2332-2345. doi: 10.1007/s10489-021-02530-z

    CrossRef Google Scholar

    [5] 姜枫, 顾庆, 郝慧珍, 等. 基于语义特征提取的砂岩薄片图像颗粒分割方法[J]. 中国科学: 信息科学, 2020, 50(1): 109-127.

    Google Scholar

    Jiang F, Gu Q, Hao H Z, et al. Grain segmentation of sandstone thin section images based on semantic feature extraction[J]. Scientia Sinica Informationis, 2020, 50(1): 109-127.

    Google Scholar

    [6] 张利军, 鲁文豪, 张建东, 等. 基于深度学习的镜下岩石、矿物薄片识别[J]. 地学前缘, 2024, 31(3): 498-510.

    Google Scholar

    Zhang L J, Lu W H, Zhang J D, et al. Rock and mineral thin section identification based on deep learning[J]. Earth Science Frontiers, 2024, 31(3): 498-510.

    Google Scholar

    [7] Saxena N, Day-Stirrat R J, Hows A, et al. Application of deep learning for semantic segmentation of sandstone thin sections[J]. Computers & Geosciences, 2021, 152: 104778.

    Google Scholar

    [8] 徐圣嘉, 苏程, 朱孔阳, 等. 基于深度学习的岩石薄片矿物自动识别方法[J]. 浙江大学学报(理学版), 2022, 49(6): 743-752.

    Google Scholar

    Xu S J, Su C, Zhu K Y, et al. Automatic identification of mineral in petrographic thin sections based on images using a deep learning method[J]. Journal of Zhejiang University (Science Edition), 2022, 49(6): 743-752.

    Google Scholar

    [9] Koh E J Y, Amini E, McLachlan G J, et al. Utilising convolutional neural networks to perform fast automated modal mineralogy analysis for thin-section optical microscopy[J]. Minerals Engineering, 2021, 173: 107230.

    Google Scholar

    [10] 陈宗铭, 唐玄, 梁国栋, 等. 基于深度学习的页岩扫描电镜图像有机质孔隙识别与比较[J]. 地学前缘, 2023, 30(3): 208-220.

    Google Scholar

    Chen Z M, Tang X, Liang G D, et al. Identification and comparison of organic matter-hosted pores in shale by SEM image analysis: A deep learning-based approach[J]. Earth Science Frontiers, 2023, 30(3): 208-220.

    Google Scholar

    [11] Liu H, Ren Y L, Li X, et al. Rock thin-section analysis and identification based on artificial intelligent technique[J]. Petroleum Science, 2022, 19(4): 1605-1621.

    Google Scholar

    [12] Zou C N, Zhu R K, Liu K Y, et al. Tight gas sandstone reservoirs in China: Characteristics and recognition criteria[J]. Journal of Petroleum Science and Engineering, 2012, 88-89: 82-91.

    Google Scholar

    [13] 林森虎, 邹才能, 袁选俊, 等. 美国致密油开发现状及启示[J]. 岩性油气藏, 2011, 23(4): 25-30, 64.

    Google Scholar

    Lin S H, Zou C N, Yuan X J, et al. Status quo of tight oil exploitation in the United States and its implication[J]. Lithologic Reservoirs, 2011, 23(4): 25-30, 64.

    Google Scholar

    [14] 贾承造, 邹才能, 李建忠, 等. 中国致密油评价标准、主要类型、基本特征及资源前景[J]. 石油学报, 2012, 33(3): 343-350.

    Google Scholar

    Jia C Z, Zou C N, Li J Z, et al. Assessment criteria, main types, basic features and resource prospects of the tight oil in China[J]. Acta Petrolei Sinica, 2012, 33(3): 343-350.

    Google Scholar

    [15] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation[C] //Proceedings of the 18th International Conference on Medical Image Computing and Computer- Assisted Intervention. Munich: Springer, 2015: 234-241.

    Google Scholar

    [16] 王媛媛, 董芳, 尚丽娜, 等. 基于改进TransUnet网络的血管内超声图像边界提取方法研究[J]. 中国生物医学工程学报, 2023, 42(1): 41-50.

    Google Scholar

    Wang Y Y, Dong F, Shang L N, et al. Research on the IVUS border detection method based on improved TransUnet[J]. Chinese Journal of Biomedical Engineering, 2023, 42(1): 41-50.

    Google Scholar

    [17] Shorten C, Khoshgoftaar T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data, 2019, 6(1): 60.

    Google Scholar

    [18] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [C] //Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc. 2017: 6000-6010.

    Google Scholar

    [19] 王金祥, 付立军, 尹鹏滨, 等. 基于CNN与Transformer的医学图像分割[J]. 计算机系统应用, 2023, 32(4): 141-148.

    Google Scholar

    Wang J X, Fu L J, Yin P B, et al. Medical image segmentation based on CNN and transformer[J]. Computer Systems & Applications, 2023, 32(4): 141-148.

    Google Scholar

    [20] 于营, 王春平, 付强, 等. 语义分割评价指标和评价方法综述[J]. 计算机工程与应用, 2023, 59(6): 57-69.

    Google Scholar

    Yu Y, Wang C P, Fu Q, et al. Survey of evaluation metrics and methods for semantic segmentation[J]. Computer Engineering and Applications, 2023, 59(6): 57-69.

    Google Scholar

    [21] 王茂桢, 王冰洁, 郝轶伟, 等. 辽中凹陷南洼中深层储层孔隙度分布特征及影响因素分析[J]. 长江大学学报(自然科学版), 2023, 20(3): 23-32.

    Google Scholar

    Wang M Z, Wang B J, Hao Y W, et al. Analysis of porosity distribution characteristics and influencing factors of middle-deep reservoirs in the southern subsag of Liaozhong Sag[J]. Journal of Yangtze University (Natural Science Edition), 2023, 20(3): 23-32.

    Google Scholar

    [22] 刘毅, 林承焰, 林建力, 等. 东海盆地西湖凹陷深层低渗-致密砂岩孔隙结构特征及成因分析[J]. 天然气地球科学, 2024, 35(3): 405-422.

    Google Scholar

    Liu Y, Lin C Y, Lin J L, et al. Pore structure characteristics and genesis analysis of deep tight sandstone in Xihu Depression, East China Sea Basin[J]. Natural Gas Geoscience, 2024, 35(3): 405-422.

    Google Scholar

    [23] 龚建涛, 白艳军. 致密砂岩储层微观孔隙结构表征研究——以鄂尔多斯盆地东南部地区延长组为例[J]. 地质与资源, 2024, 33(5): 662-670. DOI: 10.13686/j.cnki.dzyzy.2024.05.006shu

    CrossRef Google Scholar

    Gong J T, Bai Y J. Characterization of microscopic pore structure in tight sandstone reservoir: A case study of Yanchang Formation in southeastern Ordos Basin[J]. Geology and Resources, 2024, 33(5): 662-670. DOI: 10.13686/j.cnki.dzyzy.2024.05.006

    CrossRef Google Scholar

    [24] 方梦阳, 何建宁, 王万虎, 等. 一种基于MATLAB的碎屑岩粒度分析方法[J]. 岩石矿物学杂志, 2020, 39(4): 504-510.

    Google Scholar

    Fang M Y, He J N, Wang W H, et al. A particle size analysis method for clastic rock based on MATLAB[J]. Acta Petrologica et Mineralogica, 2020, 39(4): 504-510.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(3)

Article Metrics

Article views(301) PDF downloads(209) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint