2025 Vol. 34, No. 1
Article Contents

ZHANG Hong-wen, LYU Xiang-xi, SUN Yan-qiu, ZHAO Jian, SHAO Ji-liang, WANG Gang, HAN Ke-yin, YAN Yan, ZHENG Yi-yang. Climate change since Holocene recorded in Mishan black soil profile of Heilongjiang Province[J]. Geology and Resources, 2025, 34(1): 11-20. doi: 10.13686/j.cnki.dzyzy.2025.01.002
Citation: ZHANG Hong-wen, LYU Xiang-xi, SUN Yan-qiu, ZHAO Jian, SHAO Ji-liang, WANG Gang, HAN Ke-yin, YAN Yan, ZHENG Yi-yang. Climate change since Holocene recorded in Mishan black soil profile of Heilongjiang Province[J]. Geology and Resources, 2025, 34(1): 11-20. doi: 10.13686/j.cnki.dzyzy.2025.01.002

Climate change since Holocene recorded in Mishan black soil profile of Heilongjiang Province

More Information
  • The paper studies the geochronology, magnetic susceptibility, particle size and element geochemistry of black soil profile(0-1.42 m) in Mishan City. The results show that the sediments of black soil profile are mainly silt, accounting for about 70%, and the deposition rate of black soil is 9.62 cm/ka according to the age curve. The element geochemical data reveals that the major element combination characteristics of Mishan black soil profile are similar to those of other typical eolian deposits, and the change trend of UCC-normalized curves is basically the same, indicating the parent material of Mishan black soil may be of aeolian origin. The multi-index comprehensive analysis shows that the climate change of Mishan black soil profile since Holocene has experienced three stages, i.e. temperature rising in the Early Holocene, warm and humid in the Middle Holocene and cooling down in the Late Holocene.

  • 加载中
  • [1] 程峰. 中国南方更新世红土沉积物的特征及其物源研究[D]. 武汉: 中国地质大学, 2018.

    Google Scholar

    Cheng F. Study on characteristics and source provenance of the Pleistocene red earth sediments in southern China[D]. Wuhan: China University of Geosciences, 2018.

    Google Scholar

    [2] An Z S, Liu T, Lu Y C, et al. The long-term paleomonsoon variation recorded by the loess-paleosol sequence in central China[J]. Quaternary International, 1990, 7/8: 91-95.

    Google Scholar

    [3] Ding Z L, Xiong S F, Sun J M, et al. Pedostratigraphy and paleomagnetism of a ~7.0 Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 152(1/2): 49-66.

    Google Scholar

    [4] Sun J M. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 2002, 203(3/4): 845-859.

    Google Scholar

    [5] Powlson D S, Gregory P J, Whalley W R, et al. Soil management in relation to sustainable agriculture and ecosystem services[J]. Food Policy, 2011, 36(S1): S72-S87.

    Google Scholar

    [6] 杜贯新. 松嫩黑土区西北部多流域黑土地球化学及重金属累积特征[D]. 大庆: 东北石油大学, 2023.

    Google Scholar

    Du G X. The geochemical and heavy metal accumulation characteristics of black soil in the northwest of Songnen black soil region were studied [D]. Daqing: Northeast Petroleum University, 2023.

    Google Scholar

    [7] 宋运红, 刘凯, 戴慧敏, 等. 松嫩平原东部典型黑土剖面孢粉组合、时代及其对古气候的指示[J]. 地质通报, 2022, 41(9): 1528- 1538.

    Google Scholar

    Song Y H, Liu K, Dai H M, et al. Palynological assemblages of typical black soil profile in the eastern Songliao Plain and their age and its implication for paleoclimatic[J]. Geological Bulletin of China, 2022, 41(9): 1528-1538.

    Google Scholar

    [8] Guan H C, Zhu C, Zhu T X, et al. Grain size, magnetic susceptibility and geochemical characteristics of the loess in the Chaohu Lake Basin: Implications for the origin, palaeoclimatic change and provenance[J]. Journal of Asian Earth Sciences, 2016, 117: 170- 183.

    Google Scholar

    [9] 肖春晖, 王永红, 林间. 近1 Ma以来帕里西维拉海盆沉积物物源和古气候: 粒度和黏土矿物特征的指示[J]. 沉积学报, 2022, 40(2): 508-524.

    Google Scholar

    Xiao C H, Wang Y H, Lin J. Provenance and Paleoclimate ofsediments in the Parece Vela Basin in past 1 Ma: Inferences from grain-size and clay mineral distribution[J]. Acta Sedimentologica Sinica, 2022, 40(2): 508-524.

    Google Scholar

    [10] 王兆夺, 黄春长, 庞奖励, 等. 甘肃庄浪全新世黄土土壤物源分析及古气候恢复重建[J]. 沉积学报, 2020, 38(4): 781-789.

    Google Scholar

    Wang Z D, Huang C C, Pang J L, et al. Provenance analysis and reconstruction of the climate change for the Holocene loess profile in the Zhuanglang County of Gansu Province, China[J]. Acta Sedimentologica Sinica, 2020, 38(4): 781-789.

    Google Scholar

    [11] 梁爱民, 屈建军, 董治宝, 等. 库姆塔格沙漠沉积物粒度端元特征及其物源启示[J]. 中国沙漠, 2020, 40(2): 33-42.

    Google Scholar

    Liang A M, Qu J J, Dong Z B, et al. The characteristic of grain size end members in Kumtagh Desert and its implication for sediment source[J]. Journal of Desert Research, 2020, 40(2): 33-42.

    Google Scholar

    [12] 胡凯程, 贾佳, 胡忠行, 等. 湿润气候条件下温度对土壤磁化率影响的再认识[J]. 第四纪研究, 2022, 42(2): 461-471.

    Google Scholar

    Hu K C, Jia J, Hu Z X, et al. New insight into the temperature dependence of pedogenic magnetic susceptibility in humid climate region[J]. Quaternary Sciences, 2022, 42(2): 461-471.

    Google Scholar

    [13] 刘硕, 迟云平, 郝冬梅, 等. 中更新世以来松嫩平原夏季风演化: 来自哈尔滨黄土的磁化率、地球化学和总有机碳记录[J]. 地质科学, 2021, 56(4): 1279-1298.

    Google Scholar

    Liu S, Chi Y P, Hao D M, et al. Evolution of summer monsoon in Songnen Plain since Middle Pleistocene: Magnetic susceptibility, geochemistry and total organic carbon records from Harbin loess[J]. Chinese Journal of Geology, 2021, 56(4): 1279-1298.

    Google Scholar

    [14] 邱世藩, 欧阳婷萍, 朱照宇, 等. 中国东部表层土壤磁化率特征及其指示意义[J]. 地球科学--中国地质大学学报, 2014, 39(10): 1554-1564.

    Google Scholar

    Qiu S F, Ouyang T P, Zhu Z Y, et al. Magnetic susceptibility characteristics of weathering-Pedogenic topsoil along east part of China and its significance[J]. Earth Science-Journal of China University of Geosciences, 2014, 39(10): 1554-1564.

    Google Scholar

    [15] 刘凯, 戴慧敏, 刘国栋, 等. 基于主成分聚类法的典型黑土区土壤地球化学分类[J]. 物探与化探, 2022, 46(5): 1132-1140.

    Google Scholar

    Liu K, Dai H M, Liu G D, et al. Geochemical classification of the soil in a typical black soil area using the principal component analysis combined with K-means clustering algorithm[J]. Geophysical and Geochemical Exploration, 2022, 46(5): 1132-1140.

    Google Scholar

    [16] 戴慧敏, 刘凯, 宋运红, 等. 东北地区黑土退化地球化学指示与退化强度[J]. 地质与资源, 2020, 29(6): 510-517. doi: 10.13686/j.cnki.dzyzy.2025.01.002

    CrossRef Google Scholar

    Dai H M, Liu K, Song Y H, et al. Black soil degradation and intensity in Northeast China: Geochemical indication[J]. Geology and Resources, 2020, 29(6): 510-517. doi: 10.13686/j.cnki.dzyzy.2025.01.002

    CrossRef Google Scholar

    [17] 韩晓萌, 戴慧敏, 梁帅, 等. 黑龙江省拜泉地区典型黑土剖面元素地球化学特征及其环境指示意义[J]. 地质与资源, 2020, 29(6): 556-563. doi: 10.13686/j.cnki.dzyzy.2025.01.002

    CrossRef Google Scholar

    Han X M, Dai H M, Liang S, et al. Element geochemistry of the typical black soil sections in Baiquan area, Heilongjiang Province: Environmental implication[J]. Geology and Resources, 2020, 29 (6): 556-563. doi: 10.13686/j.cnki.dzyzy.2025.01.002

    CrossRef Google Scholar

    [18] 王攀, 张培新, 杨振京, 等. 靖边黄土剖面记录的末次冰期以来的气候变化[J]. 海洋地质与第四纪地质, 2019, 39(3): 162-170.

    Google Scholar

    Wang P, Zhang P X, Yang Z J, et al. Climate change since the last glacial stage recorded in Jingbian loess section[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 162-170.

    Google Scholar

    [19] 吴鹏, 谢远云, 康春国, 等. 哈尔滨荒山黄土的成因--粒度、地球化学、磁化率、沉积和地貌特征的整合记录[J]. 地球学报, 2020, 41(3): 420-430.

    Google Scholar

    Wu P, Xie Y Y, Kang C G, et al. The genesis of Huangshan loess in Harbin: Integrated evidence from grain size, geochemistry, magnetization, sedimentation and landform[J]. Acta Geoscientica Sinica, 2020, 41 (3): 420-430.

    Google Scholar

    [20] 陈骏, 季峻峰, 仇纲, 等. 陕西洛川黄土化学风化程度的地球化学研究[J]. 中国科学(D辑), 1997, 27(6): 531-536.

    Google Scholar

    Chen J, Ji J F, Qiu G, et al. Geochemical studies on the intensity of chemical weathering in Luochuan loess-paleosol sequence, China[J]. Science in China Series D: Earth Sciences, 1998, 41(3): 235-241.

    Google Scholar

    [21] 宋运红, 杨凤超, 刘凯, 等. 黑龙江省海伦地区黑土剖面常量元素地球化学特征及其对物源的指示意义[J]. 物探与化探, 2022, 46 (5): 1105-1113.

    Google Scholar

    Song Y H, Yang F C, Liu K, et al. Geochemical characteristics of major elements in the black soil profiles of the Hailun area, Heilongjiang Province and their implications for provenance[J]. Geophysical and Geochemical Exploration, 2022, 46(5): 1105-1113.

    Google Scholar

    [22] 刘青松, 邓成龙. 磁化率及其环境意义[J]. 地球物理学报, 2009, 52(4): 1041-1048.

    Google Scholar

    Liu Q S, Deng C L. Magnetic susceptibility and its environmental significances[J]. Chinese Journal of Geophysics, 2009, 52(4): 1041-1048.

    Google Scholar

    [23] Wang X Y, Yi S W, Lu H Y, et al. Aeolian process and climatic changes in loess records from the northeastern Xizang Plateau: Response to global temperature forcing since 30 ka[J]. Paleoceanography, 2015, 30(6): 612-620.

    Google Scholar

    [24] Lu H Y, Wang X Y, Ma H Z, et al. The Plateau monsoon variation during the past 130 kyr revealed by loess deposit at northeast Qinghai-Xizang (China)[J]. Global and Planetary Change, 2004, 41 (3/4): 207-214.

    Google Scholar

    [25] 陶慧, 王建华, 陈慧娴, 等. 伶仃洋ZK19孔全新统有机物δ13C和C/N值特征及东亚季风演变记录[J]. 中山大学学报(自然科学版), 2019, 58(3): 1-12.

    Google Scholar

    Tao H, Wang J H, Chen H X, et al. Characteristics of δ13C and C/N in the Holocene organic material of borehole ZK19 in Lingdingyang Bay and the records of east Asian monsoon variation[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2019, 58(3): 1-12.

    Google Scholar

    [26] 李拓宇, 莫多闻, 朱高儒, 等. 晋南全新世黄土剖面常量元素地球化学特征及其古环境意义[J]. 地理研究, 2013, 32(8): 1411- 1420.

    Google Scholar

    Li T Y, Mo D W, Zhu G R, et al. Geochemical characteristics of major elements and its paleoenvironmental significance of Holocene loess profile in southern Shanxi, China[J]. Geographical Research, 2013, 32(8): 1411-1420.

    Google Scholar

    [27] 王丰年, 李保生, 蒋树萍, 等. 查格勒布鲁剖面记录的OIS3a巴丹吉林沙漠季风气候变化[J]. 干旱区资源与环境, 2017, 31(6): 97-102.

    Google Scholar

    Wang F N, Li B S, Jiang S P, et al. Monsoonal climate changes from the Chagelebulu section of the Badain Jaran Desert in China during the OIS3a[J]. Journal of Arid Land Resources and Environment, 2017, 31(6): 97-102.

    Google Scholar

    [28] 李福春, 谢昌仁, 潘根兴. 南京老虎山黄土剖面的磁化率及Rb和Rb/Sr对古气候的指示意义[J]. 海洋地质与第四纪地质, 2002, 22 (4): 47-52.

    Google Scholar

    Li F C, Xie C R, Pan G X. Paleoclimatic implication of distribution of Rb, Rb/Sr and magnetic susceptibility in loess and paleosols from Laohushan profile, Nanjing[J]. Marine Geology & Quaternary Geology, 2002, 22(4): 47-52.

    Google Scholar

    [29] 刘阳, 邵铁全, 刘云焕, 等. 陕南西乡寒武纪梅树村期微古生物群产出层位的地球化学特征及古环境和古气候条件研究[J]. 地质论评, 2022, 68(1): 309-322.

    Google Scholar

    Liu Y, Shao T Q, Liu Y H, et al. Geochemical characteristics and palaeo-environment and palaeoclimate conditions of Early Cambrian Meishucun micropalaeontological strata in Xixiang, southern Shaanxi [J]. Geological Review, 2022, 68(1): 309-322.

    Google Scholar

    [30] 张培新, 杨振京, 王攀, 等. 陕西靖边三道沟黄土剖面特征及古气候意义[C]//中国古生物学会孢粉学分会十届一次学术年会论文摘要集. 赤峰: 中国古生物学会孢粉学分会, 2017: 42.

    Google Scholar

    Zhang P X, Yang Z J, Wang P, et al. Profile characteristics and paleoclimatic significance of Sandaogou loess in Jingbian, Shaanxi [C]//Abstracts of the 10th Annual Conference of Palynology Branch of Paleontological Society of China. Chifeng: Palynology Branch of Paleontological Society of China, 2017: 42. (in Chinese)

    Google Scholar

    [31] 周家兴, 吴利杰, 于娟, 等. 铜川地区11.4~1.5 ka B.P. 期间黄土地球化学风化特征及其古气候意义[J]. 地球与环境, 2019, 47(1): 64-73.

    Google Scholar

    Zhou J X, Wu L J, Yu J, et al. Characteristics of geochemical weathering of loess in the Tongchuan area during 11.4-1.5 ka B.P. and its Paleoclimatic implications[J]. Earth and Environment, 2019, 47(1): 64-73.

    Google Scholar

    [32] Yuan D X, Cheng H, Edwards R L, et al. Timing, duration, and transitions of the last interglacial Asian monsoon[J]. Science, 2004, 304(5670): 575-578.

    Google Scholar

    [33] Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate[J]. Science, 2005, 308(5723): 854-857.

    Google Scholar

    [34] 赵超, 李小强, 周新郢, 等. 北大兴安岭地区全新世植被演替及气候响应[J]. 中国科学: 地球科学, 2016, 46(6): 870-880.

    Google Scholar

    Zhao C, Li X Q, Zhou X Y, et al. Holocene vegetation succession and responses to climate change in the northern sector of Northeast China[J]. Science China Earth Sciences, 2016, 59(7): 1390-1400.

    Google Scholar

    [35] 祁福利, 张孟才, 鲁守刚, 等. 三江平原地区第四纪地质[M]. 北京: 地质出版社, 2015: 22-23.

    Google Scholar

    Qi F L, Zhang M C, Lu S G, et al. Quaternary geology in Sanjiang Plain[M]. Beijing: Geological Publishing House, 2015: 22-23. (in Chinese)

    Google Scholar

    [36] Wang H, Stumpf A J, Kumar P. Radiocarbon and stable carbon isotopes of labile and inert organic carbon in the critical zone observatory in Illinois, USA[J]. Radiocarbon, 2018, 60(3): 989- 999.

    Google Scholar

    [37] 崔静怡, 郭利成, 陈雨露, 等. 松嫩平原全新世黑土14C年龄-深度关系空间格局[J]. 第四纪研究, 2021, 41(5): 1332-1341.

    Google Scholar

    Cui J Y, Guo L C, Chen Y L, et al. Spatial distribution of 14C age and depth of mollisol sections in the Songnen Plain during the Holocene[J]. Quaternary Sciences, 2021, 41(5): 1332-1341.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(4)

Article Metrics

Article views(335) PDF downloads(112) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint