Citation: | ZHAO Xue-juan, DUAN Hui-sheng, MU Jun-hao, WANG Xue-song, SUN Zhong-ren, SUN Gang. INTEGRATED GEOPHYSICAL EXPLORATION APPLIED IN SPATIAL POSITIONING OF IRON DEPOSIT[J]. Geology and Resources, 2024, 33(4): 595-605. doi: 10.13686/j.cnki.dzyzy.2024.04.013 |
Taking Maogongpu iron mine in Fushun, Liaoning Province, as the object, the study carries out the high-precision gravity and magnetic survey, with non-equidistant, non-equal-ratio IP sounding and wide-audio-frequency magnetotelluric(MT) sounding in key areas. The survey adopts small point distance of 5 m for key sections, and large point distance of 20 m for other sections in single profile. The maximum interval of non-equal-ratio pole distance induced polarization(IP) sounding is less than 200 m, and the widest frequency of wide-audio-frequency MT sounding is 0.1 Hz. The gravity and magnetic data are processed by multi-software, multi-parameter and multi-method, with multiple transition maps for comprehensive research and selection of effective key areas. Conventional sounding methods with unconventional parameters are applied in key areas. Besides, multi-parameter and multi-method data processing and inversion methods are used to accurately characterize the deep electrical characteristics, which are finally verified by drilling project. The results show that the high-precision gravity survey can assist high-precision magnetic survey with iron deposit exploration. The gravity anomaly can better represent the surface projection position of anomaly geological body. Electromagnetic sounding is an effective method for vertical division. Parameters such as resistivity and polarizability of IP sounding can be used to classify and detect the boundary of alteration, structure and rock mass better. The multiple electrical parameters of IP sounding can make up for the shortage of single electrical parameters of MT sounding, and help to identify water body, polymetallic mineralization, altered body, structure and fracture zone. The working procedure from region to area, from area to point and from point to depth is effective. The drilling results show that the integrated methods have a good performance in the iron deposit exploration, especially in the determination of spatial occurrence parameters of iron orebody, such as buried depth, dip direction, dig angle and shape. A set of effective iron deposit exploration technology model is established with this method.
[1] | 沈其韩. 鞍山式铁矿深部找矿整装勘查中应注意的若干问题[J]. 地质学报, 2012, 86(9): 1331-1334. doi: 10.3969/j.issn.0001-5717.2012.09.001 Shen Q H. On the deep prospecting and integrated exploration of Anshan type iron deposits[J]. Acta Geologica Sinica, 2012, 86(9): 1331-1334. (in Chinese) doi: 10.3969/j.issn.0001-5717.2012.09.001 |
[2] | 沈保丰, 翟安民, 苗培森, 等. 华北陆块铁矿床地质特征和资源潜力展望[J]. 地质调查与研究, 2006, 29(4): 244-252. doi: 10.3969/j.issn.1672-4135.2006.04.003 Shen B F, Zhai A M, Miao P S, et al. Geological character and potential resources of iron deposits in the North China Block[J]. Geological Survey and Research, 2006, 29(4): 244-252. doi: 10.3969/j.issn.1672-4135.2006.04.003 |
[3] | 张朋, 乔树岩, 姜海洋, 等. 辽宁鞍本地区铁矿成矿规律与资源潜力分析[J]. 地质与资源, 2012, 21(1): 134-138. Zhang P, Qiao S Y, Jiang H Y, et al. Metallogenic regularities and resources potential of the iron deposits in Anshan-Benxi area, Liaoning Province[J]. Geology and Resources, 2012, 21(1): 134-138. |
[4] | 刘军, 靳淑韵. 中国铁矿资源的现状与对策[J]. 中国矿业, 2009, 18(12): 1-2, 19. doi: 10.3969/j.issn.1004-4051.2009.12.001 Liu J, Jin S Y. The actuality and countermeasure of the iron ore resource in China[J]. China Mining Magazine, 2009, 18(12): 1-2, 19. doi: 10.3969/j.issn.1004-4051.2009.12.001 |
[5] | 王岩, 王林林. 辽宁鞍本地区铁矿成矿规律与资源潜力分析[J]. 装饰装修天地, 2015, 18(S2): 144. Wang Y, Wang L L. Analysis on metallogenic regularity and resource potential of iron deposit in An-Ben area, Liaoning Province[J]. Decoration World, 2015, 18(S2): 144. (in Chinese) |
[6] | 谢忠. 辽宁省清原县大莱河铁矿床地质特征[J]. 地质与资源, 2016, 25(3): 265-268. doi: 10.3969/j.issn.1671-1947.2016.03.010 Xie Z. Geological characteristics of the Dalaihe iron deposit in Qingyuan County, Liaoning Province[J]. Geology and Resources, 2016, 25(3): 265-268. doi: 10.3969/j.issn.1671-1947.2016.03.010 |
[7] | 李士江, 全贵喜. 鞍山-本溪地区含铁变质地层的划分与对比[J]. 地质找矿论丛, 2010, 25(2): 107-111. Li S J, Quan G X. Stratigraphic division and correlation of iron ore-bearing metamorphic rocks in Anshan-Benxi area[J]. Contributions to Geology and Mineral Resources Research, 2010, 25(2): 107-111. |
[8] | 于凯君. 辽宁鞍本地区铁矿床地质特征及成矿预测[J]. 勘察测绘, 2017, 12: 262. Yu K J. Geological characteristics and metallogenic prediction of iron deposits in An-Ben area, Liaoning Province[J]. Investigation and Mapping, 2017, 12: 262. (in Chinese) |
[9] | 刘陆山, 付海涛, 刘忠元, 等. 鞍山-本溪地区富铁矿分布规律及成因探讨[J]. 地质与资源, 2015, 24(4): 341-346. doi: 10.3969/j.issn.1671-1947.2015.04.009 Liu L S, Fu H T, Liu Z Y, et al. Distribution and genesis of high-grade iron ore in Anshan-Benxi region[J]. Geology and Resources, 2015, 24(4): 341-346. doi: 10.3969/j.issn.1671-1947.2015.04.009 |
[10] | 王恩德, 夏建明, 赵纯福, 等. 弓长岭铁矿床磁铁富矿形成机制探讨[J]. 地质学报, 2012, 86(11): 1761-1772. Wang E D, Xia J M, Zhao CF, et al. Forming mechanism of high-grade magnetite bodies in Gongchangling, Liaoning Province[J]. Acta Geologica Sinica, 2012, 86(11): 1761-1772. |
[11] | 王守伦. 鞍本地区鞍山群富铁矿成因类型的讨论[J]. 矿床地质, 1986, 5(4): 14-22. Wang S L. The genetic types of rich iron deposits of Anshan Group in Anshan-Benxi area[J]. Mineral Deposits, 1986, 5(4): 14-22. |
[12] | 卢崇海, 张耀华, 奚锐, 等. 辽宁鞍本-抚顺地区新太古代含铁建造层位对比及形成时代讨论[J]. 化工矿产地质, 2013, 35(4): 193-200. Lu C H, Zhang Y H, Xi R, et al. Discussion on Archaean iron formation strata comparison and its forming era in Anshan-Benxi-Fushun area of Liaoning[J]. Geology of Chemical Minerals, 2013, 35 (4): 193-200. |
[13] | 李延河, 张增杰, 侯可军, 等. 辽宁鞍本地区沉积变质型富铁矿的成因: Fe、Si、O、S同位素证据[J]. 地质学报, 2014, 88(12): 2351-2372. Li Y H, Zhang Z J, Hou K J, et al. The genesis of Gongchangling high-grade-iron ores, Anshan-Benxi area, Liaoning Province, NE China: Evidence from Fe-Si-O-S isotopes[J]. Acta Geologica Sinica, 2014, 88(12): 2351-2372. |
[14] | 赵雪娟, 孙中任, 段会升, 等. 辽宁抚顺地区铁矿地球物理模型——以毛公堡铁矿为例[J]. 地质与资源, 2023, 32(4): 497-504. Zhao X J, Sun Z R, Duan H S, et al. Geophysical model of iron deposits in Fushun region of Liaoning Province: A case study of Maogongpu Iron Mine[J]. Geology and Resources, 2023, 32(4): 497-504. |
[15] | 洪秀伟, 庞宏伟, 刘学文, 等. 辽宁本溪大台沟铁矿地质特征[J]. 中国地质, 2010, 37(5): 1426-1433. Hong X W, Pang H W, Liu X W, et al. Geological characteristics of the Dataigou iron deposit in Benxi, Liaoning Province[J]. Geology in China, 2010, 37(5): 1426-1433. |
[16] | 张璟, 邵军, 鲍庆中, 等. 辽宁本溪大台沟铁矿地质特征及找矿标志[J]. 地质与资源, 2014, 23(4): 343-351, 356. Zhang J, Shao J, Bao Q Z, et al. Geological characteristics and prospecting indicators for Dataigou iron deposit in Benxi, Liaoning Province[J]. Geology and Resources, 2014, 23(4): 343-351, 356. |
[17] | 张朋, 彭明生, 欧阳兆灼, 等. 辽宁鞍本地区铁矿床地质特征及找矿标志分析[J]. 地质与资源, 2012, 21(6): 516-521. Zhang P, Peng M S, Ouyang Z Z, et al. Geological characteristics and ore-searching guides of the iron deposits in Anshan-Benxi area, Liaoning Province[J]. Geology and Resources, 2012, 21(6): 516-521. |
[18] | 杨秀清, 李厚民, 李立兴, 等. 辽宁鞍山-本溪地区铁矿床流体包裹体和硫、氢、氧同位素特征研究[J]. 地质学报, 2014, 88(10): 1917-1931. Yang X Q, Li H M, Li L X, et al. Characteristics of fluid inclusion, S, H and O isotope of iron deposit in Anshan-Benxi area, Liaoning Province[J]. Acta Geologica Sinica, 2014, 88(10): 1917-1931. |
[19] | 付海涛, 刘陆山, 冷文芳, 等. 鞍山-本溪南部隐伏花岗岩体地质特征[J]. 地质找矿论丛, 2013, 28(2): 176-180. Fu H T, Liu L S, Leng W F, et al. Geological characteristics of concealed granitic body in the Anshan-Benxi region[J]. Contributions to Geology and Mineral Resources Research, 2013, 28(2): 176-180. |
[20] | 周世泰. 鞍山、本溪地区鞍山群变质岩岩石化学研究及条带状铁矿的成矿条件[J]. 中国地质科学院院报, 1987, 9(2): 139-153. Zhou S T. The petrochemical study of the Archean banded iron deposit in Anshan-Benxi district, Liaoning Province[J]. Bulletin of the Chinese Academy of Geological Sciences, 1987, 9(2): 139-153. |
[21] | 刘明军, 李厚民, 李立兴, 等. 辽宁弓长岭铁矿床二矿区类矽卡岩的岩石矿物学特征[J]. 岩矿测试, 2012, 31(6): 1067-1076. Liu M J, Li H M, Li L X, et al. Petrological and mineralogical characteristics of the Skarnoid in No. 2 mining area of the Gongchangling iron deposit, Liaoning, China[J]. Rock and Mineral Analysis, 2012, 31(6): 1067-1076. |
[22] | 陈永生, 葛志广, 付方华. 鞍山深部铁矿综合地球物理研究[J]. 工程地球物理学报, 2017, 14(2): 180-184. Chen Y S, Ge Z G, Fu F H. Comprehensive geophysical study on deep iron ore in Anshan area[J]. Chinese Journal of Engineering Geophysics, 2017, 14(2): 180-184. |
[23] | 付海涛. 鞍本地区EW向深大断裂地质特征[J]. 地质找矿论丛, 2014, 29(4): 471-479. Fu H T. Geological characteristics of huge and deep EW fracture at Anshan-Benxi area[J]. Contributions to Geology and Mineral Resources Research, 2014, 29(4): 471-479. |
[24] | 孙中任, 赵雪娟, 滕寿仁, 等. 相对视电阻率异常的应用[J]. 地球物理学进展, 2017, 30(6): 2760-2765. Sun Z R, Zhao X J, Teng S R, et al. Application of relative apparent resistivity anomaly[J]. Progress in Geophysics, 2017, 30(6): 2760-2765. |
[25] | 刘明军, 李厚民, 薛春纪, 等. 辽宁弓长岭铁矿床二矿区矿石及类矽卡岩的地球化学特征及其找矿意义[J]. 地质学报, 2014, 88 (10): 1889-1903. Liu M J, Li H M, Xue C J, et al. Geochemical characteristics and prospecting significance of ores and skarnoid of No. 2 diggings of the Gongchangling iron deposit in Liaoning[J]. Acta Geologica Sinica, 2014, 88(10): 1889-1903. |
[26] | 刘军, 靳淑韵. 辽宁弓长岭铁矿磁铁富矿的成因研究[J]. 现代地质, 2010, 24(1): 80-88. Liu J, Jin S Y. Genesis study of magnetite-rich ore in Gongchangling iron deposit, Liaoning[J]. Geoscience, 2010, 24(1): 80-88. |
[27] | 李鸿业, 赵秀德. 鞍本地区鞍山式铁矿区地质构造[J]. 前寒武纪研究进展, 1999, 22(3): 22-29. Li H Y, Zhao X D. Geological structure of BIF mining district in Anshan-Benxi area, Liaoning Province[J]. Progress in Precambrian Research, 1999, 22(3): 22-29. |
[28] | 白银增, 赵涌涛, 王泽蛟, 等. 辽宁查马屯铁矿三维地质建模及深部预测[J]. 地质与资源, 2019, 28(4): 321-325. Bai Y Z, Zhao Y T, Wang Z J, et al. 3D geological modeling and deep prospecting prediction in Chamatun iron deposit, Liaoning Province[J]. Geology and Resources, 2019, 28(4): 321-325. |
[29] | 李莹, 何保, 滕寿仁, 等. 辽宁本溪大台沟铁矿床地球化学特征及成因探讨[J]. 矿物岩石, 2019, 39(1): 74-81. Li Y, He B, Teng S R, et al. Geochemical characteristics and genesis of the Dataigou iron deposit in Benxi, Liaoning Province[J]. Journal of Mineralogy and Petrology, 2019, 39(1): 74-81. |
[30] | 张林. 地质物探综合方法在辽宁张家堡地区隐伏铁矿普查中的应用[J]. 矿产勘查, 2017, 8(2): 288-292. Zhang L. Application of comprehensive method of geological exploration and geophysical method in prospecting the concealed iron ore body in Zhangjiapu area, Liaoning[J]. Mineral Exploration, 2017, 8(2): 288-292. |
[31] | 郭兰昌, 许雷, 潘洪英. 多种数据处理方法用于辽宁本溪某铁矿的磁异常解释[J]. 科技与企业, 2015(11): 109, 111. Guo L C, Xu L, Pan H Y. A variety of data processing methods for magnetic anomaly interpretation of an iron ore mine in Benxi, Liaoning Province[J]. Science and Technology Enterprises, 2015(11): 109, 111. (in Chinese) |
[32] | 王建复. 小波多尺度分解用于辽宁铁岭下峪铁矿磁异常的解释[J]. 物探与化探, 2013, 37(4): 615-619. Wang J F. The application of wavelet multi-scale solution to the magnetic anomaly interpretation of the Xiayu iron ore deposit in Tieling, Liaoning Province[J]. Geophysical and Geochemical Exploration, 2013, 37(4): 615-619. |
Comparison of magnetotelluric sounding inversion and geological sections
Transition maps with depth sounding layout
Transition maps of non-equal-ratio IP
MT sounding inversion profile and borehole design of Line 1 in Area 2
Relationship between verification hole location and MT sounding section
Comparison of vertical section between magnetic susceptibility, polarizability and resistivity of verification hole and orebody