2024 Vol. 33, No. 3
Article Contents

SHI Xu-fei, LI Xiao, CHENG Long, LIU Qiang. AGE AND CIRCULATION CHARACTERISTICS OF THE GROUNDWATER IN SHENYANG-FUSHUN SECTION OF HUNHE RIVER BASIN[J]. Geology and Resources, 2024, 33(3): 365-371. doi: 10.13686/j.cnki.dzyzy.2024.03.012
Citation: SHI Xu-fei, LI Xiao, CHENG Long, LIU Qiang. AGE AND CIRCULATION CHARACTERISTICS OF THE GROUNDWATER IN SHENYANG-FUSHUN SECTION OF HUNHE RIVER BASIN[J]. Geology and Resources, 2024, 33(3): 365-371. doi: 10.13686/j.cnki.dzyzy.2024.03.012

AGE AND CIRCULATION CHARACTERISTICS OF THE GROUNDWATER IN SHENYANG-FUSHUN SECTION OF HUNHE RIVER BASIN

  • The age of shallow groundwater in Shenyang-Fushun section of Hunhe River Basin is calculated with 3H isotopic method. Through the age zoning of groundwater and analysis of its circulation characteristics, the paper provides a scientific basis for the rational development and utilization of groundwater resources and study on carrying capacity of urban resources and environment. The results show that the groundwater in the Shenyang-Fushun section is mainly the modern water replenished in the past 60 years, and the age of groundwater flow increases gradually from the eastern mountainous area to the western plain. The distribution area of groundwater aged less than 30 a, 30-60 a and more than 60 a account for 34%, 31% and 35% of the total of the study area, respectively. The upper reaches of the basin are hilly and mountainous area, with single aquifer structure, coarse particles, groundwater age less than 30 a and strong groundwater circulation. The aquifer in the middle reaches thickens gradually, the alternation of groundwater circulation weakens gradually, and the groundwater age increases to 30-60 a. The aquifer in the lower reaches gradually changes from single layer to double layer and multilayer, with fine particles and slow water circulation, and the groundwater age increases to more than 60 a.

  • 加载中
  • [1] 刘洋. 浑河流域水资源承载能力研究[D]. 沈阳: 沈阳农业大学, 2010.

    Google Scholar

    Liu Y. Study on water resources carrying capacity of Hunhe River Basin[D]. Shenyang: Shenyang Agricultural University, 2010.

    Google Scholar

    [2] 唐雯. 沈阳经济区地下水动态变化规律及污染防控对策研究[D]. 长春: 吉林大学, 2016.

    Google Scholar

    Tang W. The research for countermeasures on dynamic change laws and the pollution prevention and control of groundwater in Shenyang Economic Zone[D]. Changchun: Jilin University, 2016.

    Google Scholar

    [3] 王峰. 沈阳地铁疏干水利用方案研究[D]. 沈阳: 沈阳建筑大学, 2011.

    Google Scholar

    Wang F. Project study on the utilization of engineering dewatering in subways of Shenyang[D]. Shenyang: Shenyang Jianzhu University, 2011.

    Google Scholar

    [4] 佟鸿儒, 肖平. 抚顺西露天矿矿坑涌水的综合循环利用[J]. 露天采矿技术, 2010, 25(6): 45, 47.

    Google Scholar

    Tong H R, Xiao P. Comprehensive recycling use of pit water in Fushun western surface mine[J]. Opencast Mining Technology, 2010, 25(6): 45, 47.

    Google Scholar

    [5] 袁雅姝, 方珍, 傅金祥. 浑河流域沈抚段枯水期氮污染特征研究[J]. 沈阳建筑大学学报(自然科学版), 2016, 32(4): 726-736.

    Google Scholar

    Yuan Y S, Fang Z, Fu J X. Characteristics of nitrogen pollution in Shen Fu section of Hunhe River Basin during dry season[J]. Journal of Shenyang Jianzhu University (Natural Science), 2016, 32(4): 726-736.

    Google Scholar

    [6] 石旭飞, 代雅建, 崔健, 等. 沈阳城市地质环境问题研究[J]. 地质与资源, 2017, 26(4): 390-396.

    Google Scholar

    Shi X F, Dai Y J, Cui J, et al. Study on the geological environment of Shenyang City[J]. Geology and Resources, 2017, 26(4): 390-396.

    Google Scholar

    [7] 崔健, 李霄, 都基众, 等. 基于GIS的浑河冲洪积扇地浅层地下水防污性能评价[J]. 地质与资源, 2011, 20(2): 137-140. doi: 10.13686/j.cnki.dzyzy.2011.02.014

    CrossRef Google Scholar

    Cui J, Li X, Du J Z, et al. The GIS-based assessment of antipollution capacity of shallow groundwater in the alluvial fan of Hunhe River[J]. Geology and Resources, 2011, 20(2): 137-140. doi: 10.13686/j.cnki.dzyzy.2011.02.014

    CrossRef Google Scholar

    [8] 张亚丽. 基于稳定同位素与水化学的浑太河流域水循环特征与水体氮污染研究[D]. 重庆: 重庆交通大学, 2014.

    Google Scholar

    Zhang Y L. Study on the characteristics of water cycle and nitrogen pollution in Hun River and Taizi River basin by using stable isotope and hydrochemical data[D]. Chongqing: Chongqing Jiaotong University, 2014.

    Google Scholar

    [9] Clark I D, Fritz P. Environmental isotopes in hydrogeology[M]. Boca Raton: CRC Press, 1997: 20-23.

    Google Scholar

    [10] Gibson J J, Edwards T W D, Birks S J, et al. Progress in isotope tracer hydrology in Canada[J]. Hydrological Processes, 2005, 19(1): 303-327. doi: 10.1002/hyp.5766

    CrossRef Google Scholar

    [11] 王文祥, 安永会, 李文鹏, 等. 基于环境同位素技术的张掖盆地地下水流动系统分析[J]. 水文地质工程地质, 2016, 43(2): 25-30.

    Google Scholar

    Wang W X, An Y H, Li W P, et al. Groundwater flow system analysis of the Zhangye Basin based on environmental isotope techniques[J]. Hydrogeology & Engineering Geology, 2016, 43(2): 25-30.

    Google Scholar

    [12] 蒋芳婷, 孟玉川, 宋泓苇, 等. 淮河下游地区地表水与地下水同位素特征分析[J]. 水文, 2022, 42(1): 90-96.

    Google Scholar

    Jiang F T, Meng Y C, Song H W, et al. Analysis of isotopic characteristics of surface water and groundwater in the lower reaches of Huaihe River[J]. Journal of China Hydrology, 2022, 42(1): 90-96.

    Google Scholar

    [13] 石旭飞, 赵海卿, 郭晓东. 基于同位素技术的珲春盆地浅层地下水可更新能力研究[J]. 水文, 2017, 37(4): 40-44.

    Google Scholar

    Shi X F, Zhao H Q, Guo X D. Study on renewability of shallow groundwater in Hunchun Basin based on isotope technology[J]. Journal of China Hydrology, 2017, 37(4): 40-44.

    Google Scholar

    [14] 石旭飞, 董维红, 李满洲, 等. 河南平原浅层地下水年龄[J]. 吉林大学学报(地球科学版), 2012, 42(1): 190-197.

    Google Scholar

    Shi X F, Dong W H, Li M Z, et al. The age of shallow groundwater in Henan Plain[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(1): 190-197.

    Google Scholar

    [15] 苗晋祥. 基于同位素的豫北平原浅层地下水形成的认识[J]. 水文地质工程地质, 2010, 37(4): 5-11.

    Google Scholar

    Miao J X. Formation of the shallow groundwater in the northern Henan Plain based on isotope analyses[J]. Hydrogeology & Engineering Geology, 2010, 37(4): 5-11.

    Google Scholar

    [16] Shi X F, Dong W H, Li M Z, et al. Evaluation of groundwater renewability in the Henan Plains, China[J]. Geochemical Journal, 2012, 46(2): 107-115. doi: 10.2343/geochemj.1.0154

    CrossRef Google Scholar

    [17] 高淑琴. 河南平原第四系地下水循环模式及其可更新能力评价[D]. 长春: 吉林大学, 2008.

    Google Scholar

    Gao S Q. Groundwater cycle pattern and renewability evaluation of groundwater in the Quaternary aquifer in Henan Plain[D]. Changchun: Jilin University, 2008.

    Google Scholar

    [18] Shaw B R. Evaluation of distortion of residuals in trend surface analysis by clustered data[J]. Mathematical Geology, 1977, 9(5): 507-517. doi: 10.1007/BF02100962

    CrossRef Google Scholar

    [19] Sun L, Zhou X K, Lu J T, et al. Climatology, trend analysis and prediction of sandstorms and their associated dustfall in China[J]. Water, Air, & Soil Pollution: Focus, 2003, 3(2): 41-50.

    Google Scholar

    [20] 王福刚. 同位素技术在黄河下游悬河段(河南段)水循环特征研究中的应用[D]. 长春: 吉林大学, 2006.

    Google Scholar

    Wang F G. The application of isotope techniques in the hydrological cycle of overground section (Henan section) of the lower reaches of Yellow River[D]. Changchun: Jilin University, 2006.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(3)

Article Metrics

Article views(251) PDF downloads(43) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint