2024 Vol. 33, No. 3
Article Contents

LI Yan. GEOCHEMICAL CHARACTERISTICS OF THE SANDSTONE FROM HOUSHIGOU FORMATION IN SOUTHERN SANJIANG BASIN: Geological Implication[J]. Geology and Resources, 2024, 33(3): 315-322. doi: 10.13686/j.cnki.dzyzy.2024.03.006
Citation: LI Yan. GEOCHEMICAL CHARACTERISTICS OF THE SANDSTONE FROM HOUSHIGOU FORMATION IN SOUTHERN SANJIANG BASIN: Geological Implication[J]. Geology and Resources, 2024, 33(3): 315-322. doi: 10.13686/j.cnki.dzyzy.2024.03.006

GEOCHEMICAL CHARACTERISTICS OF THE SANDSTONE FROM HOUSHIGOU FORMATION IN SOUTHERN SANJIANG BASIN: Geological Implication

  • The Cretaceous Houshigou Formation in Sanjiang Basin is the main ore-bearing layer of uranium deposit, developed with a large area of grey and light yellow gravel fine-medium sandstone. Taking the sandstone of Houshigou Formation in Songmuhe sag as the study object, the paper discusses the provenance composition, weathering intensity and tectonic setting of Houshigou Formation on the basis of detailed petrological and geochemical characteristics. The results show that the formation is mainly feldspar and lithic sandstone, with the major element SiO2 content of 58.91%-71.51%, total alkali content of 4.59%-10.05%, and Al content of 12.87%-16.12%. The total content of rare earth element (∑REE) is 100.72×10-6-171.34×10-6, averagely 134.532×10-6, with obvious negative Eu anomaly (δEu=0.27-0.84), indicating that the rock originates from the upper crust. The element geochemical characteristics reveal that CIA is 13.13-45.25, ICV 0.74-1.02 and PIA 53.08-67.90, indicating that the sedimentary period of Houshigou Formation was in arid-semi arid environment, and the source area experienced weak weathering. The Sr/Ba ratio is mostly less than 1, the equivalent B content mostly less than 200×10-6 and the SiO2/Al2O3 ratio averagely 4.35, indicating that the sedimentary period of Houshigou Formation was in low salinity environment. The sandstone has the geochemical properties of active continental margin. Combined with the regional evolution history, it is believed that the source area should be the felsic rock developed in Jiamusi uplift.

  • 加载中
  • [1] 高福红, 王枫, 曹花花, 等. 三江盆地绥滨断陷基底花岗岩的锆石U-Pb年代学及其构造意义[J]. 吉林大学学报(地球科学版), 2010, 40(4): 955-960.

    Google Scholar

    Gao F H, Wang F, Cao H H, et al. Zircon U-Pb age of the basement granite from Suibin depression in Sanjiang Basin and its tectonic implications[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(4): 955-960.

    Google Scholar

    [2] 于介江, 张彦龙, 葛文春, 等. 三江盆地北缘晚白垩世花岗质岩石的年代学、地球化学及其构造意义[J]. 岩石学报, 2013, 29(2): 369-385.

    Google Scholar

    Yu J J, Zhang Y L, Ge W C, et al. Geochronology and geochemistry of the Late Cretaceous granitoids in the northern margin of the Sanjiang Basin, NE China and its tectonic implications[J]. Acta Petrologica Sinica, 2013, 29(2): 369-385.

    Google Scholar

    [3] 冀华丽, 何中波, 卫三元, 等. 汤原断陷宝泉岭组微量元素地球化学特征及其对沉积环境的指示意义[J]. 世界核地质科学, 2022, 39(1): 27-38. doi: 10.3969/j.issn.1672-0636.2022.01.003

    CrossRef Google Scholar

    Ji H L, He Z B, Wei S Y, et al. Geochemical characteristics of trace elements and its sedimentary implication in Baoquanling Formation, Tangyuan fault depression[J]. World Nuclear Geoscience, 2022, 39(1): 27-38. doi: 10.3969/j.issn.1672-0636.2022.01.003

    CrossRef Google Scholar

    [4] 何中波, 冀华丽, 胡宝群, 等. 汤原断陷古近系宝泉岭组沉积特征及其对铀成矿作用的制约[J]. 矿产勘查, 2023, 14(3): 432-447.

    Google Scholar

    He Z B, Ji H L, Hu B Q, et al. Sedimentary characteristics of Paleogene Baoquanling Formation in Tangyuan fault depression and its constraints on uranium mineralization[J]. Mineral Exploration, 2023, 14(3): 432-447.

    Google Scholar

    [5] 何玉平, 刘招君, 董清水, 等. 依舒地堑汤原断陷古近系湖底扇沉积与层序特征[J]. 世界地质, 2006, 25(1): 23-28. doi: 10.3969/j.issn.1004-5589.2006.01.005

    CrossRef Google Scholar

    He Y P, Liu Z J, Dong Q S, et al. Sedimentary and sequence characteristics of Paleogene sublacustrine fan of Tangyuan fault depression in Yishu graben[J]. Global Geology, 2006, 25(1): 23-28. doi: 10.3969/j.issn.1004-5589.2006.01.005

    CrossRef Google Scholar

    [6] 何中波, 冀华丽, 卫三元, 等. 黑龙江省三江盆地砂岩型铀矿找矿方向探讨[J]. 吉林大学学报(地球科学版), 2021, 51(2): 367-379.

    Google Scholar

    He Z B, Ji H L, Wei S Y, et al. Discussion on prospecting direction of sandstone-type uranium deposits in Sanjiang Basin, Heilongjiang Province[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(2): 367-379.

    Google Scholar

    [7] 杨君, 王善博, 刘飞. 鄂尔多斯盆地西缘环县地区直罗组沉积相及其与铀矿化的关系[J]. 科学技术与工程, 2019, 19(17): 64-70. doi: 10.3969/j.issn.1671-1815.2019.17.008

    CrossRef Google Scholar

    Yang J, Wang S B, Liu F. Sedimentary facies of the Zhiluo Formation and its relationship with uranium mineralization in the Huanxian area, west of Ordos Basin[J]. Science Technology and Engineering, 2019, 19(17): 64-70. doi: 10.3969/j.issn.1671-1815.2019.17.008

    CrossRef Google Scholar

    [8] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [9] McLennan S M, Hemming S, McDaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[C]//Johnson M J, Basu A. Processes Controlling the Composition of Clastic Sediments Boulder, Colorado: Geological Society of America, 1993, 284: 21-40.

    Google Scholar

    [10] 陶瑞, 海连富, 王磊, 等. 宁夏灵武侏罗系直罗组碎屑岩地球化学特征及源区构造背景分析[J]. 中国地质, 2023, 50(6): 1817-1836.

    Google Scholar

    Tao R, Hai L F, Wang L, et al. Geochemical characteristics of clastic rocks from the Jurassic Zhiluo Formation in Lingwu, Ningxia and analysis of tectonic background of the source area[J]. Geology in China, 2023, 50(6): 1817-1836.

    Google Scholar

    [11] 付振柯, 王晓龙, 饶松, 等. 川西坳陷须三段致密砂岩优质储层特征及控制因素[J]. 中国地质, 2022, 49(1): 298-310.

    Google Scholar

    Fu Z K, Wang X L, Rao S, et al. The characteristics and main controlling factors of high quality tight sandstone reservoir in the 3th member of Xujiahe Formation in West Sichuan Depression[J]. Geology in China, 2022, 49(1): 298-310.

    Google Scholar

    [12] Cox R, Lowe D R, Cullers R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2919-2940. doi: 10.1016/0016-7037(95)00185-9

    CrossRef Google Scholar

    [13] Schieber J. A combined petrographical-geochemical provenance study of the Newland Formation, Mid-Proterozoic of Montana[J]. Geological Magazine, 1992, 129(2): 223-237. doi: 10.1017/S0016756800008293

    CrossRef Google Scholar

    [14] Hayashi K I, Fujisawa H, Holland H D, et al. Geochemistry of~1.9 Ga sedimentary rocks from northeastern Labrador, Canada[J]. Geochimica et Cosmochimica Acta, 1997, 61(19): 4115-4137. doi: 10.1016/S0016-7037(97)00214-7

    CrossRef Google Scholar

    [15] Floyd P A, Leveridge B E. Tectonic environment of the Devonian Gramscatho Basin, South Cornwall: Framework mode and geochemical evidence from turbiditic sandstones[J]. Journal of the Geological Society, 1987, 144(4): 531-542. doi: 10.1144/gsjgs.144.4.0531

    CrossRef Google Scholar

    [16] Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193. doi: 10.1007/BF00375292

    CrossRef Google Scholar

    [17] 刘桂香, 赵广江, 李永胜. 佳木斯地块西缘太平沟地区蛇绿岩的发现及其构造意义[J]. 地质与资源, 2012, 21(1): 51-58.

    Google Scholar

    Liu G X, Zhao G J, Li Y S. Discover of the ophiolite in Taipinggou area on the western margin of Jiamusi massif: Tectonic implication[J]. Geology and Resources, 2012, 21(1): 51-58.

    Google Scholar

    [18] 张兴洲, 马志红. 黑龙江东部中-新生代盆地演化[J]. 地质与资源, 2010, 19(3): 191-196. doi: 10.3969/j.issn.1671-1947.2010.03.001

    CrossRef Google Scholar

    Zhang X Z, Ma Z H. Evolution of Mesozoic-Cenozoic basins in the eastern Heilongjiang Province, Northeast China[J]. Geology and Resources, 2010, 19(3): 191-196. doi: 10.3969/j.issn.1671-1947.2010.03.001

    CrossRef Google Scholar

    [19] 赵立国, 王磊, 李娟娟, 等. 佳木斯地块中部兴东岩群大盘道岩组U-Pb年代学证据[J]. 地质与资源, 2015, 24(6): 532-538. doi: 10.3969/j.issn.1671-1947.2015.06.004

    CrossRef Google Scholar

    Zhao L G, Wang L, Li J J, et al. Geochronological evidence of U-Pb for the Dapandao rock Formation of Xingdong Group in Jiamusi Block[J]. Geology and Resources, 2015, 24(6): 532-538. doi: 10.3969/j.issn.1671-1947.2015.06.004

    CrossRef Google Scholar

    [20] 赵亮亮, 徐福忠, 张岩, 等. 牡丹江地区黑龙江杂岩锆石U-Pb年代学特征及地质意义[J]. 地质与资源, 2021, 30(4): 405-413.

    Google Scholar

    Zhao L L, Xu F Z, Zhang Y, et al. Zircon U-Pb chronology of the Heilongjiang complex in Mudanjiang area: Geological implication[J]. Geology and Resources, 2021, 30(4): 405-413.

    Google Scholar

    [21] 赵立国, 王建民, 王磊, 等. 黑龙江省东部依兰地区金沟花岗岩的锆石U-Pb定年及其地质意义[J]. 地质与资源, 2016, 25(5): 436-442. doi: 10.3969/j.issn.1671-1947.2016.05.003

    CrossRef Google Scholar

    Zhao L G, Wang J M, Wang L, et al. Zircon U-Pb dating and geological implication of the Jingou granite in Yilan area, eastern Heilongjiang Province[J]. Geology and Resources, 2016, 25(5): 436-442. doi: 10.3969/j.issn.1671-1947.2016.05.003

    CrossRef Google Scholar

    [22] 王五力, 李永飞, 郭胜哲. 中国东北地块群及其构造演化[J]. 地质与资源, 2014, 23(1): 4-24.

    Google Scholar

    Wang W L, Li Y F, Guo S Z. The Northeast China block group and its tectonic evolution[J]. Geology and Resources, 2014, 23(1): 4-24.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views(127) PDF downloads(18) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint