2024 Vol. 33, No. 2
Article Contents

YIN Zhan, ZHANG Jian-guo, CHEN Xing-lin, ZHANG Li-jun. ALTERATION INFORMATION EXTRACTION BY REMOTE SENSING TECHNOLOGY AROUND OLD MINES IN VEGETATION-COVERED AREAS[J]. Geology and Resources, 2024, 33(2): 187-195. doi: 10.13686/j.cnki.dzyzy.2024.02.007
Citation: YIN Zhan, ZHANG Jian-guo, CHEN Xing-lin, ZHANG Li-jun. ALTERATION INFORMATION EXTRACTION BY REMOTE SENSING TECHNOLOGY AROUND OLD MINES IN VEGETATION-COVERED AREAS[J]. Geology and Resources, 2024, 33(2): 187-195. doi: 10.13686/j.cnki.dzyzy.2024.02.007

ALTERATION INFORMATION EXTRACTION BY REMOTE SENSING TECHNOLOGY AROUND OLD MINES IN VEGETATION-COVERED AREAS

  • The wall rock alteration information in vegetation-covered areas is weak due to less exposed bedrock. To carry out prospecting work in the surroundings of old mines, after a series of experiments by different methods, the combined technology of vegetation suppression and rock-soil mass spectrum test is finally chosen for alteration information extraction. Firstly, the forcing invariant vegetation suppression technique is used to reduce vegetation interference, then the spectral information of altered wall rock and rock mass in altered zone of the existing mine is collected to establish a spectral sample library in the study area, and finally the extraction of alteration information is completed by CART (classification and regression tree) technique. The experiment results show that the CART alteration information extraction method based on vegetation suppression technique is effective in the extraction of remote sensing alteration information around old mines in vegetation-covered areas.

  • 加载中
  • [1] 张玉君, 杨建民, 陈薇. ETM+ (TM)蚀变遥感异常提取方法研究与应用——地质依据和波谱前提[J]. 国土资源遥感, 2002, 14(4): 30-36. doi: 10.3969/j.issn.1001-070X.2002.04.007

    CrossRef Google Scholar

    Zhang Y J, Yang J M, Chen W. A study of the method for extraction of alteration anomalies from the ETM+ (TM) data and its application: Geologic basis and spectral precondition[J]. Remote Sensing for Land & Resources, 2002, 14(4): 30-36. doi: 10.3969/j.issn.1001-070X.2002.04.007

    CrossRef Google Scholar

    [2] 姚伟, 刘亮明. 遥感技术在北非努比亚地盾Wadi Halfa地区金矿勘查中的应用[J]. 地质与勘探, 2014, 50(1): 167-172.

    Google Scholar

    Yao W, Liu L M. Application of the remote sensing technique to the gold exploration in Wadi Halfa district, Nubia shield of North Africa [J]. Geology and Exploration, 2014, 50(1): 167-172.

    Google Scholar

    [3] 王曦, 程三友, 林海星, 等. 基于Aster和Landsat 8数据在青海赛什腾地区蚀变信息提取研究[J]. 地质论评, 2022, 68(1): 262-280.

    Google Scholar

    Wang X, Cheng S Y, Lin H X, et al. Research on alteration information extraction in Saishiteng area of Qinghai based on aster and Landsat 8 data[J]. Geological Review, 2022, 68(1): 262-280.

    Google Scholar

    [4] 王生礼, 李志军. 遥感蚀变信息提取研究综述[J]. 地质与资源, 2023, 32(4): 462-470.

    Google Scholar

    Wang S L, Li Z J. A review of remote sensing alteration information extraction techniques[J]. Geology and Resources, 2023, 32(4): 462-470.

    Google Scholar

    [5] 陈一江, 祝民强. 诸广岩体南部高植被覆盖区遥感蚀变信息提取[J]. 铀矿地质, 2015, 31(3): 395-400. doi: 10.3969/j.issn.1000-0658.2015.03.007

    CrossRef Google Scholar

    Chen Y J, Zhu M Q. The extraction of remote sensing alteration anomaly in high vegetation coverage area, South Zhuguang pluton[J]. Uranium Geology, 2015, 31(3): 395-400. doi: 10.3969/j.issn.1000-0658.2015.03.007

    CrossRef Google Scholar

    [6] 曹会, 张廷秀, 李雨柯, 等. 基于中、高分辨率遥感影像的羟基和铁染蚀变信息提取与成矿预测——以吉林市等六幅为例[J]. 地质与资源, 2021, 30(6): 710-715, 706.

    Google Scholar

    Cao H, Zhang T X, Li Y K, et al. Hydroxyl and iron-stained alteration information extraction and metallogenic prediction based on medium-high-resolution remote sensing images: A case study of six map sheets in Jilin City[J]. Geology and Resources, 2021, 30(6): 710-715, 706.

    Google Scholar

    [7] 吴志春, 叶发旺, 郭福生, 等. 主成分分析技术在遥感蚀变信息提取中的应用研究综述[J]. 地球信息科学学报, 2018, 20(11): 1644-1656. doi: 10.12082/dqxxkx.2018.180195

    CrossRef Google Scholar

    Wu Z C, Ye F W, Guo F S, et al. A review on application of techniques of principle component analysis on extracting alteration information of remote sensing[J]. Journal of Geo-information Science, 2018, 20(11): 1644-1656. doi: 10.12082/dqxxkx.2018.180195

    CrossRef Google Scholar

    [8] Pour A B, Hashim M. Identifying areas of high economic-potential copper mineralization using ASTER data in the Urumieh-Dokhtar volcanic belt, Iran[J]. Advances in Space Research, 2012, 49(4): 753-769. doi: 10.1016/j.asr.2011.11.028

    CrossRef Google Scholar

    [9] 丛利民, 李国志, 王登科, 等. 光谱角技术在多光谱遥感蚀变异常提取工作中的应用[J]. 化工矿产地质, 2009, 31(4): 242-246. doi: 10.3969/j.issn.1006-5296.2009.04.009

    CrossRef Google Scholar

    Cong L M, Li G Z, Wang D K, et al. The application of SAM technique on extracting alteration abnormities from multispectral RS data[J]. Geology of Chemical Minerals, 2009, 31(4): 242-246. doi: 10.3969/j.issn.1006-5296.2009.04.009

    CrossRef Google Scholar

    [10] 张玉君, 曾朝铭, 陈薇. ETM+ (TM)蚀变遥感异常提取方法研究与应用——方法选择和技术流程[J]. 国土资源遥感, 2003, 15(2): 44-49.

    Google Scholar

    Zhang Y J, Zeng Z M, Chen W. The methods for extraction of alteration anomalies from The ETM+ (TM) data and their application: Method selection and technological flow chart[J]. Remote Sensing for Land & Resources, 2003, 15(2): 44-49.

    Google Scholar

    [11] 杨金中, 方洪宾, 张玉君, 等. 中国西部重要成矿带遥感找矿异常提取的方法研究[J]. 国土资源遥感, 2003, 15(3): 50-53.

    Google Scholar

    Yang J Z, Fang H B, Zhang Y J, et al. Remote sensing anomaly extraction in important metallogenic belts of Western China[J]. Remote Sensing for Land & Resources, 2003, 15(3): 50-53.

    Google Scholar

    [12] 马建文. 利用TM数据快速提取含矿蚀变带方法研究[J]. 遥感学报, 1997, 1(3): 208-213.

    Google Scholar

    Ma J W. Methodology study of quickly identifying mineral bearing alterations from TM data[J]. Journal of Remote Sensing, 1997, 1 (3): 208-213.

    Google Scholar

    [13] 张远飞, 吴德文, 袁继明, 等. 遥感蚀变信息多层次分离技术模型与应用研究[J]. 国土资源遥感, 2011, 23(4): 6-13.

    Google Scholar

    Zhang Y F, Wu D W, Yuan J M, et al. The model and application of multi-level detaching technique of remote sensing alteration information [J]. Remote Sensing for Land & Resources, 2011, 23(4): 6-13.

    Google Scholar

    [14] 郑桂香, 池天河, 蔺启忠. 分形在岩性分类及蚀变信息提取中的应用[J]. 国土资源遥感, 2012, 24(2): 110-115.

    Google Scholar

    Zheng G X, Chi T H, Lin Q Z. Fractal application in lithological classification and alteration extraction[J]. Remote Sensing for Land & Resources, 2012, 24(2): 110-115.

    Google Scholar

    [15] 彭南海, 黄德志, 辛宇佳, 等. 湘西沃溪金锑钨矿床流体包裹体特征及矿床成因[J]. 中国有色金属学报, 2013, 23(9): 2605-2612.

    Google Scholar

    Peng N H, Huang D Z, Xin Y J, et al. Characteristics of fluid inclusions and genesis of Woxi Au-Sb-W deposit in western Hunan, China[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(9): 2605-2612.

    Google Scholar

    [16] 孙玉珍. 沃溪金锑钨矿床围岩退色化蚀变的指示意义[J]. 采矿技术, 2013, 13(6): 143-144.

    Google Scholar

    Sun Y Z. Indication significance of decolorization and alteration of the host rock of Woxi Au-Sb-W deposit[J]. Mining Technology, 2013, 13(6): 143-144. (in Chinese)

    Google Scholar

    [17] Pour A B, Hashim M. Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran[J]. Journal of Asian Earth Sciences, 2011, 42(6): 1309-1323.

    Google Scholar

    [18] 杨佳佳, 冯雨林, 徐英奎, 等. 基于多源遥感数据的成矿远景区圈定——以内蒙古东乌珠穆沁-满都地区为例[J]. 地质与资源, 2015, 24(1): 51-56.

    Google Scholar

    Yang J J, Feng Y L, Xu Y K, et al. Delineation of metallogenic prospects based on multi-source remote sensing data: A case study of Dong Ujimqin-Mandu region, Inner Mongolia[J]. Geology and Resources, 2015, 24(1): 51-56.

    Google Scholar

    [19] 曹晓明, 周贤旭, 钟浩. "就矿找矿"的认识与实践[J]. 东华理工大学学报: 自然科学版, 2011, 34(1): 51-56.

    Google Scholar

    Cao X M, Zhou X X, Zhong H. The cognition and the practice of ore-prospecting nearby the existing deposits[J]. Journal of East China Institute of Technology (Natural Science), 2011, 34(1): 51-56.

    Google Scholar

    [20] 李志忠, 穆华一, 刘德长, 等. "遥感先行"服务自然资源调查技术变革与调整[J]. 地质与资源, 2021, 30(2): 153-160.

    Google Scholar

    Li Z Z, Mu H Y, Liu D C, et al. Remote sensing first: Service for the technological revolution and innovation in natural resources survey. Geology and Resources, 2021, 30(2): 153-160.

    Google Scholar

    [21] 陈勇敢, 韩先菊, 张慧玉, 等. 基于混合像元分解提取多种类覆盖区遥感蚀变信息——以甘肃省岷县寨上金矿区为例[J]. 地质与勘探, 2011, 47(6): 1171-1176.

    Google Scholar

    Chen Y G, Han X J, Zhang H Y, et al. Extracting remote sensing alteration information from areas with various covers based on decomposition of mixed pixels: An example of the Zhaishang gold mine in Min County of Gansu Province[J]. Geology and Exploration, 2011, 47(6): 1171-1176.

    Google Scholar

    [22] 路轩轩, 朱谷昌, 邹林, 等. 植被覆盖区的遥感蚀变信息提取研究——以老挝南部某金矿区为例[J]. 遥感信息, 2014, 29(5): 85-89.

    Google Scholar

    Lu X X, Zhu G C, Zou L, et al. The extraction of alteration information with remote sensing image of vegetation coverage area: A case study of the gold mine in southern Laos[J]. Remote Sensing Information, 2014, 29(5): 85-89.

    Google Scholar

    [23] 尹展, 张利军, 段建良, 等. 南方植被区强迫不变植被抑制技术改进与应用[J]. 国土资源遥感, 2019, 31(2): 82-88.

    Google Scholar

    Yin Z, Zhang L J, Duan J L, et al. Improvement and application of forced invariance vegetation suppression in southern vegetation area [J]. Remote Sensing for Land & Resources, 2019, 31(2): 82-88.

    Google Scholar

    [24] 吕利利, 颉耀文, 黄晓君, 等. 基于CART决策树分类的沙漠化信息提取方法研究[J]. 遥感技术与应用, 2017, 32(3): 499-506.

    Google Scholar

    Lv L L, Xie Y W, Huang X J, et al. Desertification information extraction method research based on the CART decision tree classification[J]. Remote Sensing Technology and Application, 2017, 32(3): 499-506.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Article Metrics

Article views(539) PDF downloads(95) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint