2024 Vol. 33, No. 1
Article Contents

GAO Kang, LING Xiao-bing, WEI Gui-mei, ZHENG Yu-chao, YAN Yi-fan. KARST GEOMORPHOLOGICAL TYPES AND DEVELOPMENT CHARACTERISTICS AT DIFFERENT ELEVATIONS IN QINGHAI-Xizang PLATEAU[J]. Geology and Resources, 2024, 33(1): 115-123, 97. doi: 10.13686/j.cnki.dzyzy.2024.01.014
Citation: GAO Kang, LING Xiao-bing, WEI Gui-mei, ZHENG Yu-chao, YAN Yi-fan. KARST GEOMORPHOLOGICAL TYPES AND DEVELOPMENT CHARACTERISTICS AT DIFFERENT ELEVATIONS IN QINGHAI-Xizang PLATEAU[J]. Geology and Resources, 2024, 33(1): 115-123, 97. doi: 10.13686/j.cnki.dzyzy.2024.01.014

KARST GEOMORPHOLOGICAL TYPES AND DEVELOPMENT CHARACTERISTICS AT DIFFERENT ELEVATIONS IN QINGHAI-Xizang PLATEAU

More Information
  • The karst geomorphology is commonly developed in the Qinghai-Xizang Plateau. Previous researchers have studied on the regional karst geomorphology, runoff zone and genesis, but fewer on the overall summary of the types and development of karst geomorphology at different elevations. On the basis of systematical study and summarization, with referring to the literature, this paper concludes that there are obvious diversities in karst geomorphologic types and development characteristics in term of different elevations. The karst geomorphology in areas of very high altitude (≥ 5000 m) can be divided into the types of uplifted tectonic plateau mountain, inland lake basin, inland lake depression, inland plateau mountain, alpine glacial valley and plateau mountain bedrock, with intensive weathering and denudation, forming numerous residual peaks, stone columns, depressions, etc. The karst geomorphology in the high altitude areas(3500-5000 m) involves karst alpine valley, karst mid-high mountain lake, alpine glacial valley, uplift tectonic plateau mountain, inland lake basin and inland lake depression types, with intensive structural dissolution, mainly developed with macro needle karsts, peak cluster depressions, karst caves and funnels. The karsts with middle altitude(1000-3500 m) are in the geomorphologic types of karst alpine valley, karst mid-mountain lake, plateau mountain erosion residual peak, plateau mountain peak lake, inland lake depression and karst coast, with intensive structural erosion and weak weathering and denudation. The karst forms are basically preserved, mainly developing small peak cluster depressions, dissolved holes, dissolved marks and dissolved fissures. This study is expected to provide guidance and reference for the research of rational utilization of surface water resources, geological disaster control, geomorphology and landscape, as well as the major engineering construction in karst mountain areas of the plateau.

  • 加载中
  • [1] 中国水电顾问集团贵阳勘测设计研究院, 欧阳孝忠. 岩溶地质[M]. 北京: 中国水利水电出版社, 2013: 1-2.

    Google Scholar

    Guiyang Survey and Design Institute of China Hydropower Consulting Group, Ouyang X Z. Karst geology[M]. Beijing: China Water Power Press, 2013: 1-2. (in Chinese)

    Google Scholar

    [2] 赵尔强. 辽东半岛东部海湾的滨海岩溶的初步研究[D]. 大连: 辽宁师范大学, 2008.

    Google Scholar

    Zhao E Q. Preliminary research on littoral karst of eastern bay of Liaodong Peninsula[D]. Dalian: Liaoning Normal University, 2008.

    Google Scholar

    [3] 毛邦燕, 康小兵, 黄豪擎, 等. 青藏高原东缘梯度带可溶岩地层特征[J]. 地质灾害与环境保护, 2020, 31(3): 54-58.

    Google Scholar

    Mao B Y, Kang X B, Huang H Q, et al. Characteristics of the karst strata in the gradient zone of the eastern margin of the Qinghai-Xizang Plateau[J]. Journal of Geological Hazards and Environment Preservation, 2020, 31(3): 54-58.

    Google Scholar

    [4] Jiang G H, Chen Z, Siripornpibul C, et al. The karst water environment in Southeast Asia: Characteristics, challenges, and approaches[J]. Hydrogeology Journal, 2021, 29(1): 123-135. doi: 10.1007/s10040-020-02267-y

    CrossRef Google Scholar

    [5] 卢耀如. 喀斯特发育机理与发展工程建设效应研究方向[J]. 地球学报, 2016, 37(4): 419-432.

    Google Scholar

    Lu Y R. Karst development mechanism and research directions of developing engineering construction effect[J]. Acta Geoscientica Sinica, 2016, 37(4): 419-432.

    Google Scholar

    [6] 袁道先, 章程. 岩溶动力学的理论探索与实践[J]. 地球学报, 2008, 29(3): 355-365. doi: 10.3321/j.issn:1006-3021.2008.03.009

    CrossRef Google Scholar

    Yuan D X, Zhang C. Karst dynamics theory in China and its practice [J]. Acta Geoscientica Sinica, 2008, 29(3): 355-365. doi: 10.3321/j.issn:1006-3021.2008.03.009

    CrossRef Google Scholar

    [7] 马剑飞, 付昌昌, 张春潮, 等. 康定北部高原构造岩溶发育特征与地下水径流带识别[J]. 地质科技通报, 2022, 41(1): 288-299.

    Google Scholar

    Ma J F, Fu C C, Zhang C C, et al. Plateau tectonic karst development characteristics and underground conduits identification in the northern part of Kangding[J]. Bulletin of Geological Science and Technology, 2022, 41(1): 288-299.

    Google Scholar

    [8] 王宇. 岩溶高原地下水径流系统垂向分带[J]. 中国岩溶, 2018, 37(1): 1-8.

    Google Scholar

    Wang Y. Vertical zoning of groundwater runoff system in karst plateau [J]. Carsologica Sinica, 2018, 37(1): 1-8.

    Google Scholar

    [9] 王杜江. 藏东南某隧址区高原型岩溶发育特征及工程影响[J]. 隧道建设(中英文), 2021, 41(6): 996-1006.

    Google Scholar

    Wang D J. Development characteristics of plateau karst and its influences on a tunnel area in southeast Xizang[J]. Tunnel Construction (Chinese and English), 2021, 41(6): 996-1006.

    Google Scholar

    [10] 王宇, 王梓溦. 岩溶地下水富集的地貌组合形态[J]. 中国岩溶, 2015, 34(4): 314-324.

    Google Scholar

    Wang Y, Wang Z W. Patterns of karst geomorphologic combinations in areas with rich groundwater[J]. Carsologica Sinica, 2015, 34(4): 314-324.

    Google Scholar

    [11] 周宇成, 陈清华, 孙珂, 等. 湖南地区岩溶分布特征及其发育模式[J]. 中国石油大学学报(自然科学版), 2020, 44(4): 163-173. doi: 10.3969/j.issn.1673-5005.2020.04.019

    CrossRef Google Scholar

    Zhou Y C, Chen Q H, Sun K, et al. Distribution characteristics and development model of karst in Hunan area[J]. Journal of China University of Petroleum, 2020, 44(4): 163-173. doi: 10.3969/j.issn.1673-5005.2020.04.019

    CrossRef Google Scholar

    [12] Breitenbach S F M, Cai Y J, Kwiecien O, et al. A high-altitude cave as an example of active karstification in the eastern Xizang Plateau [J]. Cave and Karst Science, 2014, 41(3): 132-137.

    Google Scholar

    [13] 卢耀如. 中国喀斯特地貌的演化模式[J]. 地理研究, 1986, 5(4): 25-35.

    Google Scholar

    Lu Y R. Models of karst geomorphological evolutions in China[J]. Geographical Research, 1986, 5(4): 25-35.

    Google Scholar

    [14] 崔之久, 洪云, 高全洲, 等. 青藏高原东北部古喀斯特过程与环境[J]. 地理学报, 1996, 51(5): 408-417.

    Google Scholar

    Cui Z J, Hong Y, Gao Q Z, et al. The process and environment of polaeokarst in the northeast area of Qinghai-Xizang Plateau[J]. Acta Geographica Sinica, 1996, 51(5): 408-417.

    Google Scholar

    [15] 许模, 毛邦燕, 张广泽, 等. 青藏高原东缘梯度带大气CO2含量与岩溶发育相关性初探[J]. 成都理工大学学报(自然科学版), 2020, 47(6): 724-732. doi: 10.3969/j.issn.1671-9727.2020.06.09

    CrossRef Google Scholar

    Xu M, Mao B Y, Zhang G Z, et al. A preliminary study on correlation of atmospheric CO2 concentration and karst development in the eastern margin of Qinghai-Xizang Plateau, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2020, 47(6): 724-732. doi: 10.3969/j.issn.1671-9727.2020.06.09

    CrossRef Google Scholar

    [16] 高全洲, 陶贞, 崔之久, 等. 青藏高原古岩溶的性质、发育时代和环境特征[J]. 地理学报, 2002, 57(3): 267-274.

    Google Scholar

    Gao Q Z, Tao Z, Cui Z J, et al. The nature, formation age and genetic environment of the palaeokarst on the Qinghai-Xizang Plateau [J]. Acta Geographica Sinica, 2002, 57(3): 267-274.

    Google Scholar

    [17] 魏晓椿. 青藏高原北缘新生代构造隆升和气候变化的耦合响应——来自塔里木盆地南缘的沉积记录[D]. 南京: 南京大学, 2017: 1-12.

    Google Scholar

    Wei X C. Coupled response of the Cenozoic tectonic uplift and climate change on the Northern Xizang Plateau: Sedimentary records from the southern margin of the Tarim Basin[D]. Nanjing: Nanjing University, 2017: 1-12.

    Google Scholar

    [18] 李兰. 青藏高原湖泊演化及生态环境效应研究[D]. 西安: 长安大学, 2021.

    Google Scholar

    Li L. Study on the lake evolution and eco-environmental effects of lakes in the Qinghai-Xizang Plateau[D]. Xi'an: Chang'an University, 2021.

    Google Scholar

    [19] 申晓谦. 基于卫星遥感的青藏高原不同海拔植被绿度变化分析[D]. 成都: 电子科技大学, 2020.

    Google Scholar

    Shen X Q. Investigating vegetation greenness variation along altitudes in Qinghai-Xizang Plateau based on satellite remote sensing[D]. Chengdu: University of Electronic Science and Technology of China, 2020.

    Google Scholar

    [20] 肖序常. 开拓、创新, 再创辉煌——浅议揭解青藏高原之秘[J]. 地质通报, 2006, 25(S1): 15-19.

    Google Scholar

    Xiao X C. Making innovation in a pioneering spirit and scoring more glorious achievements: A preliminary discussion on the 1: 250000 regional geological mapping in the Qinghai Xizang Plateau[J]. Geological Bulletin of China, 2006, 25(S1): 15-19.

    Google Scholar

    [21] 刘训, 李廷栋, 耿树方, 等. 中国大地构造区划及若干问题[J]. 地质通报, 2012, 31(7): 1024-1034.

    Google Scholar

    Liu X, Li T D, Geng S F, et al. Geotectonic division of China and some related problems[J]. Geological Bulletin of China, 2012, 31(7): 1024-1034.

    Google Scholar

    [22] 朱学稳. 西藏高原喀斯特的性质及"残余峰林"质疑[J]. 中国岩溶, 1994, 13(3): 220-228.

    Google Scholar

    Zhu X W. The nature of Xizang Plateau karst and the query concerning "relict Fenglin karst"[J]. Carsologica Sinica, 1994, 13(3): 220-228.

    Google Scholar

    [23] 中国科学院地质研究所岩溶研究组. 中国岩溶研究[M]. 北京: 科学出版社, 1979: 148-247.

    Google Scholar

    Institute of Geology, Chinese Academy of Sciences. Karst research in China[M]. Beijing: Science Press, 1979: 148-247. (in Chinese)

    Google Scholar

    [24] 李德文, 崔之久, 刘耕年. 青藏高原古岩溶的存在及其与东邻地区岩溶的对比[J]. 中国岩溶, 1999, 18(4): 25-34.

    Google Scholar

    Li D W, Cui Z J, Liu G N. Existence of palaeokarst on Xizang Plateau and its correlation with the karst of the eastern district[J]. Carsologica Sinica, 1999, 18(4): 25-34.

    Google Scholar

    [25] 袁道先. 中国西南部的岩溶及其与华北岩溶的对比[J]. 第四纪研究, 1992, 12(4): 352-361.

    Google Scholar

    Yuan D X. Karst in Southwest China and its comparison with karst in North China[J]. Quaternary Sciences, 1992, 12(4): 352-361.

    Google Scholar

    [26] 孙鸿烈. 青藏高原研究的新进展[J]. 地球科学进展, 1996, 11(6): 536-542.

    Google Scholar

    Sun H L. Recent advance in studies on Qinghai-Xizang Plateau[J]. Advances in Earth Sciences, 1996, 11(6): 536-542.

    Google Scholar

    [27] 周成虎, 程维明, 钱金凯. 数字地貌遥感解析与制图[M]. 北京: 科学出版社, 2009: 7-52.

    Google Scholar

    Zhou C H, Cheng W M, Qian J K. Digital geomorphological interpretation and mapping from remote sensing[M]. Beijing: Science Press, 2009: 7-52.

    Google Scholar

    [28] 韩海辉, 王艺霖, 李健强, 等. 雷达地形测绘DEM用于青藏高原地貌分类[J]. 遥感信息, 2015, 30(4): 43-48.

    Google Scholar

    Han H H, Wang Y L, Li J Q, et al. Classification of Xizang Plateau landform using SRTM-DEM[J]. Remote Sensing Information, 2015, 30(4): 43-48.

    Google Scholar

    [29] 严钦尚, 曾昭漩. 地貌学[M]. 北京: 高等教育出版社, 1985: 88- 102.

    Google Scholar

    Yan Q S, Zeng Z X. Geomorphology[M]. Beijing: Higher Education Press, 1985: 88-102. (in Chinese)

    Google Scholar

    [30] 卢耀如. 中国岩溶——景观·类型·规律[M]. 北京: 地质出版社, 1986: 15-59.

    Google Scholar

    Lu Y R. Karst in China: Landscapes, types and regularities[M]. Beijing: Geology Press, 1986: 15-59. (in Chinese)

    Google Scholar

    [31] 崔之久. 青藏高原的古岩溶[J]. 自然杂志, 1979, 2(9): 550-551.

    Google Scholar

    Cui Z J. Paleokarst of Qinghai-Xizang Plateau[J]. Chinese Journal of Nature, 1979, 2(9): 550-551. (in Chinese)

    Google Scholar

    [32] 王富葆. 青藏高原上的喀斯特(摘要)[J]. 中国岩溶, 1990, 9(3): 277-278.

    Google Scholar

    Wang F B. Karst in Qinghai-Xizang Plateau[J]. Carsologica Sinica, 1990, 9(3): 277-278. (in Chinese)

    Google Scholar

    [33] 章典, 师长兴. 青藏高原的大气CO2含量、岩溶溶蚀速率及现代岩溶微地貌[J]. 地质学报, 2002, 76(4): 566-570.

    Google Scholar

    Zhang D, Shi C X. CO2 partial pressure, karst dissolution rate and karst micro-landforms on the Qinghai-Xizang Plateau[J]. Acta Geologica Sinica, 2002, 76(4): 566-570.

    Google Scholar

    [34] 李向全, 马剑飞, 张春潮, 等. 川藏铁路格聂山和察雅段构造岩溶发育规律及岩溶地下水循环模式研究[J]. 水文地质工程地质, 2021, 48(5): 34-45.

    Google Scholar

    Li X Q, Ma J F, Zhang C C, et al. Evolution regularity of the plateau tectonic karst and the relevant karst groundwater circulation mode in Mount Genie and Zaya sections along the Sichuan-Xizang Railway[J]. Hydrogeology and Engineering Geology, 2021, 48(5): 34-45.

    Google Scholar

    [35] 李吉均. 青藏高原的地貌演化与亚洲季风[J]. 海洋地质与第四纪地质, 1999, 19(1): 1-12.

    Google Scholar

    Li J J. Studies on the geomorphological evolution of the Qinghai-Xizang Plateau and Asian monsoon[J]. Marine Geology & Quaternary Geology, 1999, 19(1): 1-12.

    Google Scholar

    [36] 康小兵, 杨四福, 管振德, 等. 川西高原巴塘地区可溶岩地层分布与岩溶地貌发育特征[J]. 中国岩溶, 2021, 40(3): 381-388.

    Google Scholar

    Kang X B, Yang S F, Guan Z D, et al. Distribution of soluble rock strata and development of karst landforms in the Batang area, West Sichuan Plateau[J]. Carsologica Sinica, 2021, 40(3): 381-388.

    Google Scholar

    [37] 陈洪凯, 李古均. 白龙江流域的古喀斯特地貌及形成时代探讨[J]. 科学通报, 1992, 37(15): 1405-1407.

    Google Scholar

    Chen H K, Li G J. Paleo-karst landform and its formation age in Bailong River Basin[J]. Chinese Science Bulletin, 1992, 37(15): 1405-1407. (in Chinese)

    Google Scholar

    [38] 袁道先. 中国岩溶学[M]. 北京: 地质出版社, 1994: 70-81.

    Google Scholar

    Yuan D X. Karst science in China[M]. Beijing: Geology Press, 1994: 70-81. (in Chinese)

    Google Scholar

    [39] 高全洲, 崔之久, 刘耕年, 等. 晚新生代青藏高原岩溶地貌及其演化[J]. 古地理学报, 2001, 3(1): 85-90.

    Google Scholar

    Gao Q Z, Cui Z J, Liu G N, et al. Late Cenozoic karst landforms on Qinghai-Xizang Plateau and their evolution[J]. Journal of Palaeogeography, 2001, 3(1): 85-90.

    Google Scholar

    [40] 郝呈禄, 陈光庭, 赵楠. 青海省盘道地区高原岩溶地貌特征、演化及对比浅析[J]. 青海国土经略, 2020, 29(6): 57-64.

    Google Scholar

    Hao C L, Chen G T, Zhao N. Analysis on characteristics, evolution and comparison of karst landform in Pandao area of Qinghai Province [J]. Management & Strategy of Qinghai Land & Resources, 2020, 29(6): 57-64. (in Chinese)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(4)

Article Metrics

Article views(2776) PDF downloads(426) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint