Citation: | YUN Nian-han, WANG Fu-rong, HOU Yu-guang, ZENG Hong-bin, YANG Rong-yan. CONTROL OF SHALE LITHOFACIES ON THE SHALE OIL RESERVOIR IN QIANJIANG SAG[J]. Geology and Resources, 2023, 32(6): 750-761. doi: 10.13686/j.cnki.dzyzy.2023.06.012 |
The rock mineral compositions, porosity-permeability, pore structure and geochemical characteristics of the shale reservoir of Qianjiang Formation in Qianjiang Sag, Jianghan Basin, are studied on the basis of core observation and rock slice identification, combined with XRD technology, argon ion polishing scanning electron microscopy, low temperature nitrogen adsorption experiment, high pressure Hg injection test and rock pyrolysis analysis. The results show that the shale of Qianjiang Formation is mainly composed of dolomite and clay minerals, developed with massive calcareous mudstone facies, laminated calcareous mudstone facies, massive dolomitic mudstone facies, laminated dolomitic mudstone facies, massive argillaceous dolomite facies and laminated argillaceous dolomite facies. The carbonate mineral intercrystalline pores and clay mineral interlayer pores are mainly developed in the shale reservoir, with the pore size of 2-200 nm, the porosity mostly lower than 20%, and the permeability of 0.1×10-3-100×10-3 μm2, belonging to low porosity and low-extra low permeability reservoir. Clay minerals are conducive to the development of micropores and mesopores in shale reservoirs, while the dolomites contribute to the development of macropores, and biogenic dolomites help the accumulation of organic carbon and occurrence of residual hydrocarbon. Generally, the laminated shale has higher pore size, better pore connectivity and oil content than the massive shale dose. Especially the laminated argillaceous dolomite facies, with porosity of 5%-15%, permeability of 1×10-3-10×10-3 μm2, main pore size of 50-200 nm, connected pore size of 50-100 nm, TOC content of 1%-3%, S1 content of 5×10-3-35×10-3 and OSI value mostly 400×10-3, is the dominant lithofacies of shale oil reservoir in Qianjiang Formation.
[1] | Dapples E C, Krumbein W C, Sloss L L. Tectonic control of lithologic associations[J]. AAPG Bulletin, 1948, 32(10): 1924-1947. |
[2] | 张顺, 刘惠民, 陈世悦, 等. 中国东部断陷湖盆细粒沉积岩岩相划分方案探讨——以渤海湾盆地南部古近系细粒沉积岩为例[J]. 地质学报, 2017, 91(5): 1108-1119. doi: 10.3969/j.issn.0001-5717.2017.05.011 Zhang S, Liu H M, Chen S Y, et al. Classification scheme for lithofacies of fine-grained sedimentary rocks in faulted basins of eastern China: Insights from the fine-grained sedimentary rocks in Paleogene, southern Bohai Bay Basin[J]. Acta Geologica Sinica, 2017, 91(5): 1108-1119. doi: 10.3969/j.issn.0001-5717.2017.05.011 |
[3] | Wang G C, Carr T R. Marcellus shale lithofacies prediction by multiclass neural network classification in the Appalachian Basin[J]. Mathematical Geosciences, 2012, 44(8): 975-1004. doi: 10.1007/s11004-012-9421-6 |
[4] | Jacobi J, Gladkikh M, Lecompte B, et al. Integrated petrophysical evaluation of shale gas reservoirs[C]//CIPC/SPE Gas Technology Symposium 2008 Joint Conference. Calgary: OnePetro, 2008. |
[5] | Mitra A, Warrington D, Sommer A. Application of lithofacies models to characterize unconventional shale gas reservoirs and identify optimal completion intervals[C]//SPE Western Regional Meeting. Anaheim: OnePetro, 2010. |
[6] | Milliken K L, Esch W L, Reed R M, et al. Grain assemblages and strong diagenetic overprinting in siliceous mudrocks, Barnett shale (Mississippian), Fort Worth Basin, Texas[J]. AAPG Bulletin, 2012, 96(8): 1553-1578. doi: 10.1306/12011111129 |
[7] | Abouelresh M O, Slatt R M. Lithofacies and sequence stratigraphy of the Barnett shale in east-central Fort Worth Basin, Texas[J]. AAPG Bulletin, 2012, 96(1): 1-22. doi: 10.1306/04261110116 |
[8] | Aplin A C, Macquaker J H S. Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems[J]. AAPG Bulletin, 2011, 95(12): 2031-2059. doi: 10.1306/03281110162 |
[9] | Bloch J D. Mud and mudstones: introduction and overview[J]. Eos, 2005, 86(14): 145. doi: 10.1029/2005EO140006 |
[10] | 冯增昭. 从定量岩相古地理学谈华南地区海相地层油气勘探[J]. 古地理学报, 2005, 7(1): 1-11. Feng Z Z. Discussion on petroleum exploration of marine strata in South China from quantitative lithofacies palaeogeography[J]. Journal of Palaeogeography, 2005, 7(1): 1-11. |
[11] | 沈骋, 任岚, 赵金洲, 等. 页岩岩相组合划分标准及其对缝网形成的影响——以四川盆地志留系龙马溪组页岩为例[J]. 石油与天然气地质, 2021, 42(1): 98-106, 123. Shen C, Ren L, Zhao J Z, et al. Division of shale lithofacies associations and their impact on fracture network formation in the Silurian Longmaxi Formation, Sichuan Basin[J]. Oil&Gas Geology, 2021, 42(1): 98-106, 123. |
[12] | 王圣柱. 准噶尔盆地博格达地区中二叠统芦草沟组岩相类型及页岩油储集特征[J]. 大庆石油地质与开发, 2021, 40(1): 1-16, doi:10.19597/j.issn.1000-3754.201912017. Wang S Z. Lithofacies types and shale-oil accumulating characteristics of Middle Permian Lucaogou Formation in Bogda area of Junggar Basin[J]. Petroleum Geology&Oilfield Development in Daqing, 2021, 40(1): 1-16, doi:10.19597/j.issn.1000-3754.201912017. |
[13] | 王勇, 王学军, 宋国奇, 等. 渤海湾盆地济阳坳陷泥页岩岩相与页岩油富集关系[J]. 石油勘探与开发, 2016, 43(5): 696-704. Wang Y, Wang X J, Song G Q, et al. Genetic connection between mud shale lithofacies and shale oil enrichment in Jiyang Depression, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2016, 43(5): 696-704. |
[14] | 徐兴友, 刘卫彬, 白静, 等. 松辽盆地南部青山口组一段页岩油富集地质特征及资源潜力[J]. 地质与资源, 2021, 30(3): 296-305, doi:10.13686/j.cnki.dzyzy.2021.03.011. Xu X Y, Liu W B, Bai J, et al. Enrichment characteristics and resource potential of shale oil in the first member of Qingshankou Formation in Southern Songliao Basin[J]. Geology and Resources, 2021, 30(3): 296-305, doi:10.13686/j.cnki.dzyzy.2021.03.011. |
[15] | 李士超, 杨建国, 柳波, 等. 松辽盆地三肇凹陷青山口组一段泥页岩岩石学特征及岩相划分——以松页油3井为例[J]. 地质与资源, 2021, 30(3): 317-324, 295, doi:10.13686/j.cnki.dzyzy.2021.03.013. Li S C, Yang J G, Liu B, et al. Petrology and lithofacies of shale from the first member of Qingshankou formation in Sanzhao Sag, Songliao Basin: a case study of SYY-3 Well[J]. Geology and Resources, 2021, 30(3): 317-324, 295, doi:10.13686/j.cnki.dzyzy.2021.03.013. |
[16] | 柳波, 石佳欣, 付晓飞, 等. 陆相泥页岩层系岩相特征与页岩油富集条件——以松辽盆地古龙凹陷白垩系青山口组一段富有机质泥页岩为例[J]. 石油勘探与开发, 2018, 45(5): 828-838. Liu B, Shi J X, Fu X F, et al. Petrological characteristics and shale oil enrichment of lacustrine fine-grained sedimentary system: A case study of organic-rich shale in first member of Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2018, 45(5): 828-838. |
[17] | Iqbal M A, Rezaee R, Smith G, et al. Shale lithofacies controls on porosity and pore structure: An example from Ordovician Goldwyer Formation, Canning Basin, Western Australia[J]. Journal of Natural Gas Science and Engineering, 2021, 89: 103888. doi: 10.1016/j.jngse.2021.103888 |
[18] | Xu S, Hao F, Shu Z G, et al. Pore structures of different types of shales and shale gas exploration of the Ordovician Wufeng and Silurian Longmaxi successions in the eastern Sichuan Basin, South China[J]. Journal of Asian Earth Sciences, 2020, 193: 104271. doi: 10.1016/j.jseaes.2020.104271 |
[19] | 孙中良, 王芙蓉, 何生, 等. 潜江凹陷古近系盐间典型韵律层页岩孔隙结构[J]. 深圳大学学报(理工版), 2019, 36(3): 289-297. Sun Z L, Wang F R, He S, et al. The pore structures of the shale about typical inter-salt rhythm in the Paleogene of Qianjiang depression[J]. Journal of Shenzhen University (Science and Engineering), 2019, 36(3): 289-297. |
[20] | Huang C J, Hinnov L. Evolution of an Eocene-Oligocene saline lake depositional system and its controlling factors, Jianghan Basin, China[J]. Journal of Earth Science, 2014, 25(6): 959-976. doi: 10.1007/s12583-014-0499-2 |
[21] | 李乐, 刘爱武, 漆智先, 等. 潜江凹陷王场背斜潜四下段盐韵律层页岩储层孔隙结构特征[J]. 地球科学, 2020, 45(2): 602-616. Li L, Liu A W, Qi Z X, et al. Pore Structure characteristics of shale reservoir of the lower Qian 4 Member in the Wangchang anticline of the Qianjiang sag[J]. Earth Science, 2020, 45(2): 602-616. |
[22] | 徐二社, 陶国亮, 李志明, 等. 江汉盆地潜江凹陷盐间页岩油储层不同岩相微观储集特征——以古近系潜江组三段4亚段10韵律为例[J]. 石油实验地质, 2020, 42(2): 193-201. Xu E S, Tao G L, Li Z M, et al. Microscopic reservoir characteristics of different lithofacies from inter-salt shale oil reservoir in Qianjiang Sag, Jianghan Basin: A case study of Paleogene Eq34-10 rhythm[J]. Petroleum Geology&Experiment, 2020, 42(2): 193-201. |
[23] | 刘心蕊, 吴世强, 陈凤玲, 等. 江汉盆地潜江凹陷潜江组盐间页岩油储层特征研究——以潜34-10韵律为例[J]. 石油实验地质, 2021, 43(2): 268-275. Liu X R, Wu S Q, Chen F L, et al. Characteristics of reservoirs for inter-salt shale oil of Qianjiang Formation, Qianjiang Sag, Jianghan Basin: A case study of the Eq34-10 rhythm[J]. Petroleum Geology&Experiment, 2021, 43(2): 268-275. |
[24] | Wang Z X, Zheng Y H, Chen F L, et al. Biomarker geochemistry of Eq34-10 cyclothem shale in Qianjiang Depression of the Jianghan salt lake facies basin[J]. Petroleum Science and Technology, 2018, 36(2): 148-153. doi: 10.1080/10916466.2017.1411947 |
[25] | Hou Y G, Wang F R, He S, et al. Properties and shale oil potential of saline lacustrine shales in the Qianjiang Depression, Jianghan Basin, China[J]. Marine and Petroleum Geology, 2017, 86: 1173-1190. doi: 10.1016/j.marpetgeo.2017.07.008 |
[26] | 沈娟, 李小平, 安生婷, 等. 四川盆地志留系龙马溪组页岩储集空间及矿物组成特征[J]. 地质与资源, 2017, 26(6): 590-595, doi:10.13686/j.cnki.dzyzy.2017.06.010. Shen J, Li X P, An S T, et al. Reservoir space and mineral composition of the shale from Silurian Longmaxi Formation in Sichuan Basin[J]. Geology and Resources, 2017, 26(6): 590-595, doi:10.13686/j.cnki.dzyzy.2017.06.010. |
[27] | 方志雄, 陈开远, 陈凤玲, 等. 江汉盆地盐湖沉积充填模式[M]. 北京: 石油工业出版社, 2006. Fang Z X, Chen K Y, Chen F L, et al. Filling models of Jianghan salt lake basin[M]. Beijing: Petroleum Industry Press, 2006. |
[28] | 肖枫. 潜江凹陷潜江组盐间页岩储层特征研究——以潜3410韵律和潜40中5韵律为例[D]. 荆州: 长江大学, 2017. Xiao F. Study on the characteristics of salt shale reservoir in Qianjiang Formation in Qianjiang Sag: A case study of the 10th rhythm of Eq34 and the 5th rhythm of middle Eq40[D]. Jingzhou: Yangtze University, 2017. |
[29] | 陈晨, 姜在兴, 孔祥鑫, 等. 潜江凹陷潜江组盐间细粒岩沉积特征及其对页岩含油性的控制[J]. 地学前缘, 2021, 28(5): 421-435, doi:10.13745/j.esf.sf.2020.12.8. Chen C, Jiang Z X, Kong X X, et al. Sedimentary characteristics of intersalt fine-grained sedimentary rocks and their control on oil-bearing ability of shales in the Qianjiang Formation, Qianjiang Sag[J]. Earth Science Frontiers, 2021, 28(5): 421-435, doi:10.13745/j.esf.sf.2020.12.8. |
[30] | Sun M D, Zhang L H, Hu Q H, et al. Multiscale connectivity characterization of marine shales in southern China by fluid intrusion, small-angle neutron scattering (SANS), and FIB-SEM[J]. Marine and Petroleum Geology, 2020, 112: 104101. doi: 10.1016/j.marpetgeo.2019.104101 |
[31] |
孔祥鑫. 湖相含碳酸盐细粒沉积岩特征、成因与油气聚集[D]. 北京: 中国地质大学, 2020, doi: |
[32] | 汪品先. 古海洋学研究进展——第四届国际古海洋学会议(ICP-IV)介绍[J]. 海洋地质动态, 1993, 9(4): 1-8. Wang P X. Progress in paleoceanography research: Introduction to the Fourth International Conference on Paleoceanography (ICP-IV)[J]. Marine Geology Frontiers, 1993, 9(4): 1-8. (in Chinese) |
[33] | 吴世强, 陈凤玲, 姜在兴, 等. 江汉盆地潜江凹陷古近系潜江组白云岩成因[J]. 石油与天然气地质, 2020, 41(1): 201-208. Wu S Q, Chen F L, Jiang Z X, et al. Origin of Qianjiang Formation dolostone in Qianjiang Sag, Jianghan Basin[J]. Oil&Gas Geology, 2020, 41(1): 201-208. |
[34] | 孙中良, 王芙蓉, 侯宇光, 等. 盐湖页岩有机质富集主控因素及模式[J]. 地球科学, 2020, 45(4): 1375-1387. Sun Z L, Wang F R, Hou Y G, et al. Main controlling factors and modes of organic matter enrichment in salt lake shale[J]. Earth Science, 2020, 45(4): 1375-1387. |
Tectonic map with sampling well location of Qianjiang Sag (Modified from Reference [27])
Lithofacies classification diagram of shale samples
Pore structures of shale samples
SEM photographs of shale samples
Full-scale pore size distribution curves of shale samples
Nitrogen adsorption and incremental intrusion Hg curves before and after extraction of shale samples
Scatter diagrams showing the correlation between pore and mineral contents of shale samples
Correlations between geochemical parameters and mineral contents of shale samples
Comprehensive stratigraphic column of Eq34-10 rhythm in Qianjiang Sag